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ABSTRACT 

 

Recent advances in single molecule techniques have allowed scientists to 

address biological questions which cannot be resolved by traditional ensemble 

measurements. In this dissertation, I integrate single molecule and bulk measurements 

to establish a direct link between copper exposure and neurotoxicity in prion disease. 

Furthermore, I develop a new analysis method to improve the accuracy of kinetic 

parameter estimation in single molecule Atomic Force Microscope (AFM) experiments. 

Finally, I develop a new fluorescence localization microscopy to identify the axial 

position of a single fluorescent object with sub-nanometer accuracy. 

Prion diseases are characterized by the misfolding and oligomerization of prion 

protein (PrP). Copper exposure has been linked to prion pathogenesis; however, the 

molecular mechanism is still unknown. In the first part of this dissertation, I use single 

molecule fluorescence assay, dynamic force spectroscopy (DFS) with AFM, and real-

time quaking-induced conversion (RT-QuIC) assay to resolve, for the first time, the 

mechanistic basis by which Cu2+ ions induce a structural change in PrP, further promote 

oligomerization, template amyloid formation and neurotoxicity. 

In the second part of this dissertation, I established a more accurate analysis 

method for single molecule DFS experiments. DFS is a widely used technique to 

characterize the dissociation kinetic between individual biomolecules. In AFM-DFS, 

receptor-ligand complexes are ruptured at different force rates by varying the speed at 

which the AFM-tip and substrate are pulled away from each other. The rupture events 

are grouped according to their pulling speeds and the mean force and loading rate of 
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each group is calculated. This data is subsequently fit to the established models to 

extract the kinetic parameters such as the intrinsic off-rate (koff) and the width of the 

potential energy barrier (xβ). However, due to the large uncertainty in determining the 

mean forces and loading rates, errors in the estimated koff and xβ can be substantial. 

Here, I demonstrate that these errors can be dramatically reduced by sorting rupture 

events into groups using cluster analysis. Monte Carlo simulations show that the cluster 

analysis is very effective at improving the accuracy of parameter estimation, especially 

when the number of unbinding events are limited and not well separated into distinct 

groups. 

Finally, I describe a new technique, standing wave axial nanometry (SWAN), to 

image the axial location of a single nanoscale fluorescent object with sub-nanometer 

accuracy and 3.7 nm precision. A standing wave, generated by positioning an AFM tip 

over a focused laser beam, is used to excite fluorescence; axial position is determined 

from the phase of the emission intensity. I use SWAN to measure the orientation of 

single DNA molecules of different lengths, grafted on surfaces with different 

functionalities.   
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CHAPTER 1. INTRODUCTION 

 

1.1 General Introduction 

This dissertation advances the field of bioengineering by developing new tools to 

observe single biological molecules, new methods to analyze single molecule data and 

by using single molecule techniques to address critical biological problems. This 

dissertation is divided into three parts. In the first part of the dissertation, I integrate both 

ensemble and single molecule techniques to resolve and understand the mechanisms 

of protein misfolding, aggregation and neurotoxicity in prion neurodegenerative disease. 

Next, I develop a new analysis method to improve the accuracy of kinetic parameter 

estimation in single molecule Atomic Force Microscope (AFM) experiments.  Finally, I 

develop a new fluorescence localization microscope to identify the axial position of a 

single fluorescent molecule with nanometer accuracy and precision. 

An important feature of many major neurodegenerative disorders is the 

misfolding and aggregation of protein which causes tissue damage and cell death [1]. 

Transmissible spongiform encephalopathies (TSEs) or prion diseases, such as scrapie 

in sheep and Creutzfeldt-Jakob disease (CJD) in humans, are characterized by the 

misfolding and accumulation of prion protein (PrP) [2]. In Alzheimer’s diseases, the 

most common cause of dementia among the elderly, the amyloid-β peptide (Aβ) 

monomers, aggregate to form amyloid plaques [3, 4]. Similarly, in Parkinson’s disease, 

the natively unstructured protein, α-synuclein (αSyn), accumulates into fibers inside 

nerve cells [5]. 
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Propagation of protein misfolding in these disorders is believed to proceed 

through a common prion-like mechanism, which means that proteins misfold, impose 

their structures on natively folded proteins, and template their aggregation [6]. Multiple 

lines of evidence suggest that metal binding is strongly correlated to protein misfolding 

in neurodegenerative diseases [7-9]. For example, Aβ forms cytotoxic aggregates in 

high concentrations of Cu2+ and Zn2+ [9]. Similarly, upon binding to Cu2+ and Fe3+, αSyn 

coverts to a different conformation which enhances its aggregation [9]. Furthermore, it 

has been reported that Cu2+ promotes PrP aggregation and produces neurotoxic 

aggregates [10]. However, the mechanisms by which metal ions induces 

neurodegenerative protein misfolding, aggregation, and neurotoxicity are not clear.  

The misfolding and structural change of proteins are a complex process, which 

involve multiple pathways and cause different conformations to coexist in a test tube 

[11, 12]. In contrast to conventional ensemble experiments which measure the 

averaged behavior of thousands of proteins, single molecule approaches are well suited 

to map protein misfolding and structural changes since they can directly characterize 

the biophysical properties of individual molecules and resolve heterogeneous misfolding 

pathways [13-15]. In the first part of this dissertation, I use single molecule force and 

fluorescence measurements, along with bulk biophysical techniques, to understand the 

relationship between metal exposure, protein misfolding, aggregation and neurotoxicity 

in prion diseases. 

One of the techniques that I used to quantify the dissociation kinetics of individual 

PrP molecules is dynamic force spectroscopy (DFS) measurements using an AFM [15]. 

However, due to limitations in current data analysis methods, the errors in estimated 
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kinetic parameters can be substantial. The second part of this dissertation aims to 

address this concern by incorporating clustering algorithms into DFS analysis to 

improve the accuracy of kinetic parameter estimation. I employ computer simulations to 

mimic real DFS experiments and evaluate the performance of this new analysis method. 

Another technique that I used to measure the misfolding of individual PrP 

molecules is fluorescence microscopy. Currently, the resolution of conventional 

fluorescence microscopes is limited by the diffraction of light: with a high numerical 

aperture objective and visible excitation, resolution is about 200 nm in the lateral 

direction and 500 nm along the optical axis. Although a single fluorescent molecule can 

be localized with nanometer accuracy along the x- and y-axis [16, 17], improving 

resolution and single molecule localization accuracy along the optical axis is more 

challenging [18]. In the final part of this dissertation, I develop a fluorescence 

localization method with an axial accuracy and precision superior to previous 

techniques. This technique, called standing wave axial nanometry (SWAN), utilizes a 

commercial AFM mounted on a single molecule confocal microscope [19]. A standing 

wave, generated by positioning an AFM tip over a focused laser beam, is used to excite 

the fluorophore; axial position is determined from the phase of the emission intensity. As 

a proof of principle, I use SWAN to measure the orientation of single DNA molecules of 

different lengths, grafted on surfaces with different functionalities. 
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1.2 Thesis Organization 

 This dissertation is organized as follows: 

 Chapter 2 presents our paper published in Science Advances, resolving the 

mechanistic basis for copper induced PrP misfolding and oligomerization [20]. This work 

combines single molecule fluorescence and AFM force measurements, along with 

circular dichroism (CD) spectroscopy, dynamic light scattering (DLS) and real-time 

quaking induced conversion (RT-QuIC) protein conversion assay, to investigate the 

relationship between copper exposure and neurotoxicity in prion diseases at the single 

molecule level. 

 Chapter 3 presents a new analysis method for DFS experiments. This work is 

motivated by our Science Advances paper [20], where we realized the lack of accuracy 

of current methods in analyzing DFS data. Chapter 3 addresses this concern by using 

simple cluster analysis algorithms, including Gaussian mixture, logistic regression and 

K-means clustering to sort and analyze data. The results of this part of the dissertation 

have been submitted for publication. 

 Chapter 4 presents our paper published in Nano Letters [21] describing a new 

fluorescence localization technique, SWAN, to image the axial location of a single 

molecule with nanometer accuracy and precision.  

Finally, chapter 5 summarizes the significance of this dissertation, its impact on 

understanding the molecular mechanism of protein aggregation in neurodegenerative 

diseases and improvement of single molecule techniques. I also briefly describe future 

applications of the single molecule methods described in this dissertation. 
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CHAPTER 2. COPPER-INDUCED STRUCTURAL CONVERSION 
TEMPLATES PRION PROTEIN OLIGOMERIZATION AND 

NEUROTOXICITY  
 

This chapter is published in Science Advances† 

Chi-Fu Yen, Dilshan S. Harischandra, Anumantha Kanthasamy and 
Sanjeevi Sivasankar 

  

2.1 Abstract 

  Prion protein (PrP) misfolding and oligomerization are key pathogenic events in 

prion disease. Copper exposure has been linked to prion pathogenesis, however, its 

mechanistic basis is unknown. Here we resolve, with single molecule precision, 

conditions for Cu2+ mediated PrP misfolding, oligomerization and neurotoxicity. Using a 

single molecule fluorescence assay, we demonstrate that Cu2+ induces PrP monomers to 

misfold before oligomer assembly; the disordered N-terminal region mediate this 

structural change. Single molecule force spectroscopy measurements show that the 

misfolded monomers have a 900 fold higher binding affinity which promotes their 

oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrP 

serve as seeds that template amyloid formation. Finally, organotypic slice cultures show 

that misfolded PrP mediate inflammation and degeneration of neuronal tissue. Our study 

provides direct proof that Cu2+ misfolds PrP, subsequently promoting oligomerization and 

cytotoxicity. 

 
 
 
  
† C.F. Yen, D.S. Harischandra, A. Kanthasamy, S. Sivasankar, Copper-induced structural 

conversion templates prion protein oligomerization and neurotoxicity, Sci. Adv. 2 (2016) 
e1600014. 
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2.2 Introduction  

 Protein misfolding and oligomeric protein accumulation are key pathogenic 

mechanisms in many major neurodegenerative disorders including prion diseases, 

Parkinson’s disease and Alzheimer’s disease [1]. Propagation of protein misfolding in 

these disorders is believed to proceed through a common prion-like mechanism, meaning 

that proteins misfold, impose their structures upon natively folded proteins and template 

their aggregation [2]. Although the structure of natively-folded PrP has been resolved [3-

6], the mechanistic basis for its misfolding, aggregation and neurotoxicity is unknown. 

PrP is a metal-binding protein; the unstructured N-terminal tail of PrP contains four 

copies of an octarepeat sequence which bind a number of divalent ions including Cu2+, 

Ni2+ and Mn2+ (Fig.1A) [7-9]. Metal ions also bind to an additional site in the flexible region 

between the octarepeats and the C-terminal domain [10]. It has been proposed that Cu2+ 

ions play a role in PrP structural conversion [11]; however, direct molecular proof for the 

role of Cu2+ in PrP misfolding and aggregation is lacking. Biochemical experiments show 

that PrPs incubated with Cu2+ ions misfold from a native, α-helix rich structure, to a 

predominantly β-sheet conformation that is resistant to proteolytic digestion [12, 13]. 

Along the same lines, aggregation of PrP is enhanced either by the insertion of additional 

octapeptide repeats or by exposure to high concentrations of Cu2+ [14, 15]. However, the 

mechanisms by which Cu2+ induces PrP misfolding, aggregation and neurotoxicity is 

unknown. 

Here we resolve, with single molecule precision, Cu2+ induced misfolding of PrP 

under physiological conditions. We also demonstrate that the misfolded PrP serve as 

seeds for the templated formation of aggregates which mediate inflammation and 
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degeneration of neuronal tissue. We compare the biophysical properties of full-length, 

human PrP with globular protein lacking the N-terminal octapeptide repeats in the 

presence and absence of Cu2+, Ni2+ and Mn2+ (Fig. 1). Using a fluorescence based single 

 

 

Figure 1. Prion protein (PrP) constructs used in the experiments. Two constructs of 
PrP were used in the experiments: (A) Full-length human PrP (PrP(23-231) or PrP(23-
230)). The unstructured N-terminal domain (orange) has four metal binding octapeptide 
repeats. The C-terminal is globular and rich in α-helices (blue). Red dots indicate cysteine 
179 and cysteine 214 which were used to tether PrP to the surface. (B) PrP without 
unstructured N-terminal region (PrP(90-231) or PrP(90-230)). (C) SDS-PAGE and 
Western blot of purified PrP(23-230) (Molecular Weight = 25.2 kD) and PrP(90-230) 
(Molecular Weight = 18.5 kD). SDS-PAGE was stained by Krypton fluorescent protein 
stain. Anti-prion antibodies POM1 and SAF32 were used to recognize the globular 
domain of PrP and the octapeptide repeats respectively. 

(B) (A) 

(C) 
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molecule assay, we demonstrate that PrP monomers misfold to a protease resistant 

conformation before oligomer assembly; the N-terminal region and Cu2+ ions mediate 

misfolding. This is a striking result since the conventional model is that protease-

resistance is acquired only by oligomers; in fact protease-resistance is often used as a 

read-out for PrP oligomerization [16].  Using single molecule force measurements with an 

Atomic Force Microscope (AFM), we show that misfolded PrP monomers have an almost 

900 fold higher affinity (KA) compared to the native isoform and rapidly form oligomers. 

Using real-time quaking-induced conversion (RT-QuIC) [17], a cell-free seeding assay 

designed for rapid clinical diagnosis of prion disease, we show that misfolded PrP form 

active seeds that template aggregation. Finally, to investigate the effect of Cu2+ induced 

PrP misfolding on neuronal viability, we quantify protein markers for inflammation, 

apoptosis and oxidative stress in brain explants exposed to native and misfolded PrP. 

Analysis of these organotypic slice cultures provide direct molecular proof that the 

misfolded PrPs mediate neuroinflammation and neurodegeneration. Taken together, our 

results identify conditions for Cu2+ induced PrP misfolding, oligomerization and 

neurotoxicity. 

 

2.3 Results 

2.3.1 N-terminal region and Cu2+ ions mediate protease resistance in PrP 
monomers 

 A common characteristic of PrP misfolding is the conversion of native, proteinase-

K (PK) sensitive PrP (PrPsen) into an isoform that is prone to aggregation and resists PK 

digestion (PrPres) [18-20]. In order to identify misfolded PrP and determine the role of 

different metal ligands and of the N- and C-terminal domains in PrP misfolding, we 
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developed a fluorescence based single molecule PK-resistance assay. The single 

molecule resolution of our assay allowed us measure the misfolding of PrP monomers 

and avoid artifacts introduced by higher order oligomerization. In our assay, the PrPs 

were first biotinylated and then covalently immobilized on a glass substrate decorated 

with maleimide functionalized Poly Ethylene Glycol (PEG) tethers (Methods). Surface 

density measurements (Methods; figs. S1 and S2) showed that the PrP bound to the 

surface as well separated monomers (table S1). The immobilized PrP monomers were 

incubated overnight either in the presence or absence of 1 mM Ni2+, Mn2+, or Cu2+ ions; 

dissociation constants indicate that the PrP would be saturated with the divalent ions 

under these experimental conditions [11]. The samples were then treated with PK for 

different time periods (0-13 hours) and subsequently labeled with fluorescent streptavidin 

(Fig. 2, A to C; Methods). If the biotinylated PrP converted to a PrPres conformation, it was 

not digested by PK and could therefore bind to the fluorescent streptavidin (Fig. 2C). On 

the other hand, biotinylated PrPsen was readily digested by PK which resulted in a 

decreased binding of fluorescent streptavidin (Fig. 2, A and B). As a positive control, we 

covalently immobilized PK-resistant, fluorescently labeled, double-stranded DNA to 

identical PEG functionalized substrates. As a negative control, PK-sensitive, biotin-

conjugated bovine serum albumin (BSA) was covalently immobilized on the PEG 

monolayers (Methods).  

Our data demonstrated that only full-length PrP (PrP(23-231)) incubated in Cu2+ 

converted to a stable PrPres conformation. Even after a ten hour exposure to PK, the 

fluorescence intensity of PrP(23-231) was unaltered (Fig. 2D). Similarly, the fluorescence 

intensity from the positive control remained unchanged after 10 hour PK incubation. On  
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Figure 2. Monitoring protease resistance in single prion protein (PrP) monomers. 
PrP(90-231) or PrP(23-231) was biotinylated and covalently immobilized on a substrate 
functionalized with a Poly Ethylene Glycol (PEG) monolayer. The immobilized PrP was 
incubated (A) either without or with 1 mM Cu2+/Mn2+/Ni2+ (PrP(90-231)), (B) either without 
or with 1 mM Mn2+/Ni2+ (PrP(23-231)) or (C) with 1mM Cu2+ (PrP(23-231)). Following 
incubation, the immobilized PrP was digested with Proteinase-K (PK); undigested PrP 
was detected by labeling with fluorescent streptavidin. Structural conversion to a PK-
resistant conformation resulted in a fluorescence signal. Measured fluorescence from (D) 
PrP(23-231) and (E) PrP(90-231) after PK digestion for different time courses normalized 
by the fluorescence measured from undigested PrP in each condition. Only PrP(23-231) 
incubated in Cu2+ converted to a stable PK-resistant conformation. PEG substrates 
functionalized with either fluorescently labeled DNA or biotin-conjugated bovine serum 
albumin (BSA) were used as positive and negative controls respectively. The data in D 
was acquired from a total of 32652, 17638, 4776 and 29207 molecules in the absence 
and presence of Cu2+, Mn2+ and Ni2+ respectively. The data in E was acquired from a total 
of 9634, 12438, 10680 and 8869 molecules in the absence and presence of Cu2+, Mn2+ 
and Ni2+ respectively. Error bars correspond to the s.e. calculated using a bootstrap with 
replacement protocol. 

(A) 

(B) 

(C) 

(D) (E) 
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the other hand, PK-resistance was significantly reduced for PrP(23-231) bound to Mn2+ 

or Ni2+ and for PrP(23-231) in the absence of divalent ions; the fluorescence intensity 

decreased between  60% and 90% after 10 hour PK incubation (Fig. 2D). The data in 

figure 2D was acquired from a total (summed across all time-points) of 32652, 17638, 

4776 and 29207 PrP(23-231) molecules in the absence and presence of Cu2+, Mn2+ and 

Ni2+ respectively. 

Similarly, globular PrP that lacked the unstructured N-terminal region (PrP(90-

231)) was sensitive to PK digestion both in the absence and presence of Cu2+, Mn2+ and 

Ni2+; after a 10 hour digestion with PK, the fluorescence intensity decreased between 

60% and 100% (Fig. 2E). In contrast, fluorescence signal from the negative control was 

completely eliminated after 10 hours of PK digestion (Fig. 2, D and E). The data in figure 

2E was acquired from a total (summed across all time-points) of 9634, 12438, 10680 and 

8869 PrP(90-231) molecules in the absence and presence of Cu2+, Mn2+ and Ni2+ 

respectively. These results show that monomeric PrPres formation requires both the 

intrinsically disordered N-terminal region and Cu2+ ions; elimination of either results, 

predominantly, in PrPsen conformation. 

 

2.3.2 Full-length PrPs incubated in Cu2+ ions have a higher binding affinity 

Next, we proceeded to use single molecule AFM force measurements [21, 22] to 

characterize the kinetics of the initial stage of PrP aggregation and to identify the role of 

different divalent metal ions and protein domains in this process. AFM force spectroscopy 

has previously been employed to study the misfolding and interactions of 

neurodegenerative proteins [23, 24]. Single molecule measurements with tethered PrP 
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monomers enabled us to directly determine association and dissociation rates while 

avoiding artifacts due to the formation of higher order oligomers. Relative dimerization 

rates (relative on-rates) were determined from the measured binding probabilities while 

off-rates were measured using single molecule dynamic force spectroscopy. In both sets 

of experiments, the PrP constructs were covalently immobilized on an AFM tip and 

substrate (Fig. 3, A and B; Methods) and incubated in either the presence or absence of 

1 mM Cu2+, Mn2+ or Ni2+. The AFM tip and surface was first brought into contact enabling 

opposing PrPs to dimerize. The tip was then withdrawn from the substrate and the force 

required to rupture the PrP dimer was recorded. If the PrPs did not interact, no unbinding 

forces were measured (Fig. 3C). However, dimer formation resulted in unbinding events 

characterized by the non-linear stretching of the PEG tethers (Fig. 3D); the stretching of 

PEG served as a molecular fingerprint for PrP dimer formation since its extension under 

load has been extensively characterized [25]. As described in the methods section, the 

unbinding events were fit to an extended freely-jointed chain (FJC) model [25] using a 

total least squares fitting protocol, only unbinding events that occurred at a distance 

corresponding to the contour length of two PEGs in series were used in further analysis 

(Methods). Since each PrP can be tethered to the AFM tip /substrate via either one or 

two PEGs (covalently bound to either Cys 179 or/and Cys 214), we fit the unbinding 

events to alternate FJC models that assumed stretching of either a single tether or two 

parallel tethers [26]. Our analysis showed that in 78% of the selected events, PrP was 

immobilized on both the AFM tip and substrate via a single PEG tether. In contrast, 21% 

of unbinding corresponded to rupture events where one of the PrPs was tethered via two 

PEG linkers while the other PrP was immobilized via a single PEG. Only 1% of the events,  
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Figure 3. Binding probabilities of full-length PrP and truncated PrP measured using 
single molecule Atomic Force Microscopy (AFM). Probability of binding was 
measured for (A) PrP(23-231) bound to both the AFM tip and substrate and (B) PrP(90-
231) bound to both AFM tip and substrate. Representative force vs. tip-substrate 
separation when opposing PrPs (C) do not interact, or (D) interact with each other. In the 
case of PrP interaction, the PEG tether is stretched as a freely-jointed chain (FJC) before 
PrP unbinding. (E) Interaction probabilities were measured for PrP only on AFM tip (red), 
PrP only on substrate (green) and PrP on both AFM tip and substrate (blue). Red and 
green bars indicate the probability of non-specific interactions. Only PrP(23-231) on both 
tip and substrate shows a higher binding rate than non-specific interactions. (F) Binding 
probability (orange) and relative on-rate (blue) between opposing PrP(23-231) and 
binding probability (cyan) between opposing PrP(90-231) in the absence and presence 
of 1mM Mn2+, 1mM Ni2+, and 1mM Cu2+. The total number of PrP(23-231) measurements 
were 62523, 20440, 24315 and 19070 in the absence of divalent metal ions and in the 
presence of Mn2+, Ni2+, and Cu2+ respectively. The total number of PrP(90-231) 
measurements were 22048, 18866, 8293 and 8368 in the absence of divalent metal ions 
and in the presence of Mn2+, Ni2+, and Cu2+ respectively. Error bars of binding probability 
indicate the s.e., were estimated using a bootstrap with replacement protocol. Error bars 
of relative on-rate indicate the s.e., were propagated from the s.e. of binding probability. 
 

 

(A) (B) (C) (D) 

(E) (F) 
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corresponded to unbinding events where both PrPs were immobilized via two tethers. 

This heterogeneous tethering distribution however did not affect the measured binding 

probability or unbinding force; identical results were obtained when events corresponding 

to the stretching of only single tethers were compared to measurements that correspond 

to the stretching of both single and parallel PEG tethers. The measurements were 

repeated several thousand times at 6 or 11 different pulling velocities and at different 

positions of substrate. Surface density of PrP was estimated for every condition using 

single molecule fluorescence microscopy (Methods; figs. S1 and S2); measured 

probabilities were normalized for direct comparison. 

To identify the role of the unstructured N-terminal region in PrP interactions, we 

first compared the binding probability of full-length PrP(23-231) and globular PrP(90-231) 

in the absence of divalent metal ions. We established that our selected unbinding events 

had a non-specific binding probability of 0.15±0.04% by eliminating PrP from either the 

tip or the substrate (Fig. 3E). A comparable binding probability of 0.05±0.02% was 

measured for opposing PrP(90-231) suggesting that globular PrP lacking the N-terminal 

domain do not form dimers (Fig. 3E). In contrast, PrP(23-231) dimerized with a five-fold 

higher probability (0.81±0.04%) showing that the N-terminal tail plays a role in 

dimerization (Fig. 3E).  

Next, we quantified the effect of divalent ions on the homotypic binding 

probabilities between opposing PrP(23-231) (Fig. 3A) and opposing PrP(90-231) (Fig. 

3B). Homotypic PrP(90-231) binding probabilities were comparable to non-specific 

adhesion; interaction frequency in the presence of Mn2+, Ni2+, Cu2+ and in the absence of 

divalent ions was 0.03±0.02%, 0.03±0.02%, 0.14±0.08%, and 0.05±0.02% respectively 
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(Fig. 3F). However, in striking contrast, homotypic PrP(23-231) binding probability was 

significantly enhanced by the presence of divalent ions. While a binding probability of 

0.81±0.04% was measured in the absence of divalent ions, the interaction frequency 

increased to 1.85±0.18%, 3.92±0.34% and 4.21±0.45% when Mn2+, Ni2+ and Cu2+ were 

added to solution (Fig. 3F).  

Based on the probabilities of interaction, we calculated the relative on-rates for 

PrP(23-231) interactions (table S2) [27]. Since the association rates depend on factors 

besides microscopic binding rates, such as the protein surface density, the local geometry 

of the tip and substrate and the location of the proteins, all rates were calculated relative 

to the association rate of homotypic PrP(23-231) interactions in the absence of divalent 

ions (Methods) [27]. The on-rate of homotypic PrP(23-231) was increased to 6.3±0.9 

times in 1 mM Cu2+, 5.8±0.7 times in 1 mM Ni2+ and 2.6±0.3 in 1 mM Mn2+ (Fig. 3F; table 

S2). 

Next, using PrP(23-231), we calculated the dissociation rate by measuring the 

most probable rupture force at different rates of application of force; the data was fitted to 

the Bell-Evans equation [28] to extract the intrinsic off-rate (koff) and the width of the 

potential energy barrier (xβ) that inhibits dimer dissociation (Fig. 4; Methods; figs. S3 to 

S6). Our data shows that PrP dimer off-rates in the absence of divalent ions and in the 

presence Mn2+, Ni2+ were comparable; the measured off-rates corresponded to 3.1×10-2 

sec-1, 1.3×10-2 sec-1 and 1.0×10-2 sec-1 respectively (Fig. 4, A to C; table S2). In contrast, 

the measured off-rate in Cu2+ was two orders of magnitude smaller with a value of 2.2×10-

4 sec-1 (Fig. 4D; table S2). This indicates that dimers of PrP in Cu2+ have lifetimes that are 

around 100 times longer than PrPsen dimers.  
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Figure 4. Dissociation rate of PrP(23-231) dimers measured using single molecule 
dynamic force spectroscopy. (A) Plots of the measured rupture forces and loading 
rates (LRs) in the absence of divalent ions. Colored open squares correspond to 
individual unbinding events at different LRs (556 events).  Black circles representing the 
most probable rupture forces were fit to the Bell-Evans model (black dashed line) to 
determine the off-rates (koff) and energy barrier width (xβ). Error bars indicate the standard 
deviation of forces. 90% confidence interval (CI) was calculated using a bootstrap with 
replacement protocol. Similar analysis for PrP(23-231) in (B) 1mM Mn2+ (709 events); (C) 
1mM Ni2+ (1133 events); (D) 1mM Cu2+ (606 events). 

 

 

(A) (B) 

(C) (D) 
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Using the measured off-rates and the relative on-rates determined from the binding 

probabilities, we calculated the relative association constant (KA) for PrP(23-231) in the 

presence of different metal ions (Methods). The KA of PrP incubated in Cu2+, Ni2+ and 

Mn2+ was 863, 18 and 6 times higher than PrP in the absence of divalent ions respectively 

(table S2).  

 

2.3.3 PrPs incubated in Cu2+ serve as seeds for templated aggregation 

 Next, we used RT-QuIC [17], an in vitro seeding assay, to test if PrP exposed to 

divalent metal ions form seeds that template aggregation. In a conventional RT-QuIC 

assay, trace amounts of scrapie seeds are added to a recombinant PrP substrate and 

repeatedly agitated [17]; amyloid fiber formation is monitored from an increase in 

fluorescence intensity when Thioflavin T (ThT) binds to the aggregate. If the seeds are 

active, a more rapid onset of aggregation is measured with increasing seed concentration. 

In our measurements, we generated PrP seeds by incubating human recombinant 

PrP(23-230) or PrP(90-230) in either the presence or absence of 10 M Mn2+, Ni2+ or 

Cu2+ ions at 37°C. As the PrP began to misfold to form seeds, their aggregation was 

monitored using ThT fluorescence intensity; seed formation was accelerated by 

periodically agitating the solution (Methods). While PrP(23-230) incubated in Mn2+, Ni2+ 

and Cu2+ ions, began forming seeds between 15 hrs and 25 hrs, PrP(23-230) in the 

absence of divalent ions began forming seeds only after 55 hours (fig. S7). When PrP(90-

230) was incubated in the presence of Ni2+ and Cu2+ ions  for 95 hours, no seed formation 

was measured (fig. S8). However, PrP(90-230) incubated in Mn2+ ions began forming 

seeds after 85 hours (fig. S8).  
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We used the PrP(23-230) seeds to template aggregation of recombinant human 

PrP(23-230) in the absence of metal ions (Methods). Since the presence of trace amounts 

of divalent ions may affect in vitro conversion [29], 1 mM of EDTA, a metal ion chelator, 

was included in assay (Methods). When seeds were added to the substrate of natively 

folded PrP, a lag phase (Tth) preceded the onset of aggregation (Fig. 5A). The duration 

of Tth indicated the efficiency of the seeding reaction [30, 31]; for the same concentration 

of seeds, a shorter Tth indicated an earlier onset of aggregation and more efficient seed 

propagation. Previous theoretical studies of templated protein aggregation predict that 

the lag phase depends on the amount of initial seed; a decrease in Tth is predicted as the 

seed concentration increases (Fig. 5B) [30]. We therefore measured Tth when 150 fg, 1.5 

pg, 15 pg, 150 pg and 1.5 ng of seeds were added to 15 g of recombinant human PrP(23-

230) (Fig. 5, C to F; Methods; figs. S9 to S11). Only PrP(23-230) seeds prepared in 10 

M Cu2+ ions showed a decrease in Tth with increasing seed concentration (one-tailed t-

test, p = 0.05), suggesting an inverse correlation as predicted by theory (Fig. 5D). 

Similarly, when PrP(23-230) seeds prepared in 1 M Cu2+ ions were used in the 

experiments, a more rapid onset of aggregation with increasing seed concentration was 

measured (fig. S12). In contrast, a decrease in Tth with increasing seed concentration was 

not observed when seeds were prepared in Mn2+ and Ni2+ ions (one-tailed t-test, p = 1, 

0.81 respectively) (Fig. 5, E and F). These results demonstrates that only PrP(23-230) 

exposed to Cu2+ ions serve as seeds for formation of prion protein aggregates. 
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Figure 5. Seeding activity and neurotoxicity of PrP(23-230) measured using real-
time quaking induced conversion (RT-QuIC) and organotypic slice cultures. (A) In 
the RT-QuIC assay, enhancement of thioflavin T (ThT) fluorescence is measured upon 
binding to amyloid fibrils. For nucleated polymerization, duration of the lag phase 
increases when the initial amount of seeds decreases. (B) For templated aggregation, 
the duration of the lag phase is predicted to be inversely correlated to the seed 

concentration. (C) RT-QuIC traces for 15 g human recombinant PrP(23-230) substrate 

seeded with PrP(23-230) that had been pre-exposed to 10 M Cu2+. Fluorescence signals 
from PrP aggregates were averaged across five replicates and baseline corrected. 
Duration of the lag phase was determined to be the time point where ThT fluorescence 
intensity first increased beyond a predetermined threshold (5 times the standard deviation 
of a blank samples without PrP seeds and substrate). (D) Log-log plot of lag phase 

(A) 

(D) (E) (F) 

(C) (B) 

(G) (H) 
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duration for different amounts of PrP(23-230) seeds formed in 10 M Cu2+. The linear 
decrease in lag phase duration with increasing seed concentration is suggestive of an 
inverse correlation as predicted by theory. Similar analysis using seeds formed in (E) 10 

M Mn2+ and (F) 10 M Ni2+ ions. In contrast to seeds formed in 10 M Cu2+, the threshold 
time does not decrease with increasing seed concentration indicating that aggregation in 
E and F are not templated. Error bars correspond to s. e. of mean. (G) Representative 
western blot of protein markers for neuroinflammation and neurodegeneration after 
organotypic slice cultures were exposed to PrP(23-230) seeds. (H) Quantification of 
Western blot band intensities show increased GFAP, PKC-δ and Bax protein expression 
upon exposure to copper-induced prion amyloids. Each group is represented by the mean 
± SEM from at least four separate measurements. 

 

2.3.4 PrPs incubated in Cu2+ induce neuroinflammation and neurodegeneration in 
brain tissue 

 Finally, we demonstrated the cytotoxic nature of Cu2+ induced PrP amyloids using 

a mouse organotypic slice culture assay. Slices of brain tissue from young mice were 

incubated with either misfolded PrP(23-230) prepared by a pre-exposure to Cu2+ ions 

(PrP-Cu2+) or to PrP(23-230) monomers that were not pre-exposed to Cu2+ (PrP-No 

Metal).  PrP-Cu2+ and  PrP-No Metal, were prepared using an identical protocol as the 

RT-QuIC assay but without adding ThT (Methods). At the end of the treatment period, 

whole cell lysates were prepared from the brain slices and three protein markers for 

neuroinflammation and neurodegeneration were assayed using Western Blot analysis 

(Methods). We first characterized the levels of glial fibrillary acidic protein (GFAP), an 

important indicator of astrocytic activation during neuroinflammation. Western blot 

analysis indicated that PrP-Cu2+ results in higher GFAP immunoreactivity than PrP-No 

Metal or control slices which weren’t exposed to PrP (Fig. 5, G and H). Next, since 

elevated gliosis enhances oxidative stress and downstream neuronal degeneration, we 

also analyzed the expression of Protein Kinase C δ (PKC-δ), a key oxidative stress-

sensitive kinase of the novel PKC family. Activation of PKC-δ has been shown to induce 
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neuronal cell death and its relevance to oxidative stress mediated neurodegeneration is 

seen in many neurodegenerative diseases including Alzheimer’s, Parkinson’s and Prion 

disease [32-35]. We observed significantly increased levels of PKC-δ when brain slices 

were incubated with PrP-Cu2+. Finally, since PKC-δ is a pro-apoptotic kinase, its 

activation results in a downstream apoptotic protein cascade and neuronal degeneration. 

We therefore investigated the activation of one such pro-apoptotic protein, Bax. Our 

western blot analysis showed an increase in Bax activity in mouse brain slices incubated 

with PrP-Cu2+. We ruled out any role of the miniscule amounts of Cu2+ ions, introduced 

into the slice cultures upon addition of protein seeds, in enhancing these protein markers 

(fig. S13). Taken together, the notable increase in the levels of GFAP, PKC-δ, and Bax 

upon addition of PrP-Cu2+ suggest that Cu2+ induced misfolding contributes to neurotoxic 

signaling and mediates neuronal cell death (Fig. 5, G and H). 

 

2.4 Discussion 

Since PK degrades accessible regions of proteins that have flexible secondary 

structures, proteolytic digestion is routinely used to identify PrP domains that have 

misfolded into a β-sheet rich conformation. We therefore developed a fluorescence assay, 

with single-molecule sensitivity, to measure the PK-resistance, and consequently the 

misfolding, of PrP monomers. Our experiments demonstrate that the unstructured N-

terminal region and Cu2+ ions mediate PrP monomer misfolding and PK-resistance. It has 

been reported that Cu2+ binding reduces the folding stability of PrP, making a 

conformation transition more thermodynamically favorable [36]. In fact, ensemble 

biophysical experiments with PrP(23-231) show that while exposure to Cu2+ ions results 
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in a PK-resistant conformation, PrPsen isoforms are observed in Zn2+, Mg2+, Ca2+, Mn2+ 

and Fe2+ [12]. In contrast, PrP(90-231) forms oligomeric aggregates rich in β-sheets only 

at acidic pH [37].  

It has been suggested that the direct inhibition of PK by copper may be responsible 

for previous reports of Cu2+ induced PK-resistance in ensemble biochemical experiments 

[38]. However, in our experiments, the Cu2+ ions are washed out of solution prior to PK 

incubation. Thus our fluorescence experiments demonstrate that Cu2+ promotes PK-

resistance through a direct interaction with PrP(23-231) and not by inhibiting PK itself. 

Furthermore, we show that PrP(90-231) exposed to Cu2+ remains more PK-sensitive 

confirming that the Cu2+ ions do not inhibit PK activity. Previous studies show that PK 

degrades the N-terminal region of scrapie PrP without compromising pathogenicity [39, 

40]. Experiments with transgenic mice also show that globular PrP is sufficient for 

propagating scrapie in vivo [41]. In contrast, both our single molecule and RT-QuIC data 

shows that in an in-vitro system, the N-terminal region is essential for Cu2+ induced 

misfolding and aggregation. One possible explanation for this inconsistency is that Cu2+ 

ions trigger PrP(23-231) monomers to misfold into a distinct, non-infective, strain that 

resists PK digestion [42].  

In solution, unmodified PrPsen as well as PrPsen tagged with biotin and PEG tethers 

are equally sensitive to digestion by PK. We demonstrated this by using PK to digest 

unlabeled-PrP(23-230), biotin/PEG-labeled PrP(23-230), unlabeled-PrP(90-230) and 

biotin/PEG-labeled PrP(90-230), in solution (fig. S14). However, since the PrPs are 

tethered to a surface in our single molecule protease resistance assay, biotinylated 

fragments of the digested PrP that remain immobilized following PK treatment likely 
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account for the 40% fluorescence background measured when PrPsen is digested with PK 

for 10 hours. A candidate biotinylated fragment is the region of PrP containing three 

biotinylation sites (Lys 185, Lys 194 and Lys 204), that lies in between the two Cys tether 

points. It is however important to note that since the tethered fragments are expected to 

contribute a similar fluorescence background signal when PrPres is digested with PK, this 

isoform is at least 60% more PK-resistant than PrPsen. Our hypothesis on the origin of the 

background signal is supported by the complete elimination of fluorescence signal 

measured in the negative control (biotinylated BSA), which lacks tethered, biotinylated 

peptide fragments (Fig. 2, D and E). 

By comparing the interaction probabilities of PrP(23-231) and PrP(90-231), we 

show that the unstructured N-terminal tail has dominant influence on the first stage of 

oligomerization: i.e. PrP dimerization. Our data suggests that in the absence of the N-

terminal tail, PrP(90-231) does not dimerize within the 100 ms time window that the AFM 

tip and surface are held in contact. It has previously been suggested that one of the key 

functions of the unstructured N-terminal region is in enhancing the efficiency of 

aggregation [43]. This effect may be mediated by the polybasic region (residues 23-31) 

in the disordered N-terminal region which is believed to be involved in PrP propagation 

[44]. Our data also indicates that the relative association constant of full-length PrP 

incubated with Cu2+ ions was 863 times higher than the affinity in the absence of divalent 

ions. This increase in relative KA could arise from a Cu2+ induced tertiary structural 

conversion of PrP(23-231) [45].  

In our single molecule force and fluorescence assay, PrPs were immobilized by 

reducing the intramolecular disulfide bond between Cys 179 and Cys 214 and 
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functionalizing the Cys residues with PEG tethers. Since tagging the Cys residues with 

PEG tethers can potentially destabilize PrP and promote misfolding, we used NMR 

spectroscopy, dynamic light-scattering, CD spectroscopy and thermal denaturation 

experiments to confirm that PrP molecules are in a stable, native, monomeric 

conformation upon functionalization. We confirmed that the PrPs remained in their native 

conformation following disulfide bond reduction and PEG labeling using CD spectroscopy 

(Supplementary Methods; fig. S15) and 1H-NMR (Supplementary Methods; 

Supplementary Results; figs. S16 to S23). Our CD data shows that native, reduced and 

PEG-functionalized PrP(23-230) and PrP(90-230) retain an α-helix content that is 

characteristic of natively folded PrP (fig. S15) [46]. While PrP(23-230) and PrP (90-230) 

with intact disulfide bonds have α-helix contents of 28% and 43% respectively, the α-helix 

content, upon reduction of this linkage, is 27% and 35%. Similarly, the α-helix content of 

PrP(23-230) and PrP(90-230) bound to PEG is 21% and 32%. In contrast, previous CD 

measurements show that misfolded PrP is typically characterized by a low α-helix content 

of ~ 7% [47]. We also used 1H-NMR to confirm that the native structure of PrP(23-230) 

and PrP (90-230)  was preserved when the disulfide bond between Cys179 and Cys214 

was reduced (figs. S20 and S21) and when PrP(23-230) and PrP (90-230)  were 

functionalized with PEG linkers (figs. S22 and S23); the chemical shift dispersions of all 

these structures were similar to natively folded PrP.  

Furthermore, by monitoring temperature-induced unfolding of PrP(23-230) and 

PrP(90-230) before and after attaching PEG tethers, we confirmed that PEG 

functionalization does not alter the stability of the folded PrP (fig. S24) [48]. Identical CD 

thermal denaturation curves with melting temperatures of 61.4 ± 0.4 °C and 62.9 ± 0.7 °C 
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were measured for PrP(23-230) before and after PEG functionalization (fig. S24A). 

Similarly, the melting temperatures (65.1 ± 0.4 °C and 65.9 ± 0.8 °C) of PrP(90-230) 

before and after attaching PEG tethers were similar (fig. S24B). Finally, light scattering 

data showed that while 100% of PrP(23-230) and 96% of PrP(90-230) with intact disulfide 

bonds existed as monomers, reducing this linkage and functionalizing the Cys residues 

with PEG linkers does not significantly decrease the fraction of monomers 

(Supplementary Methods; fig. S25). In agreement with our results, previous studies show 

that reducing the disulfide bond between Cys179 and Cys214 does not alter the pathway 

for PrP misfolding [49] and that misfolding occurs without disulfide exchange [50].  

Since previous studies have shown that aging of PrP promotes oligomerization 

and copper-induced PK resistance [12], we used PrP(23-230) and PrP(90-230) within one 

month after purification. Furthermore, we used CD and dynamic light-scattering to confirm 

that the proteins retained their native conformation and remained in a monomeric state, 

even after 2 months of storage (Supplementary Methods; figs. S26 and S27). After a 2 

month storage period, 96% of PrP(23-230) and 95% of PrP(90-230) remained monomeric 

(fig. S26) with α-helix contents of 38% and 33% respectively (fig. S27). Since the 

presence of even trace amounts of misfolded PrP will result in spontaneous aggregation 

in an RT-QuIC experiment, the absence of large deviations between replicates (figs. S9 

to S11) confirms that the PrP substrate used in our experiments is in a native 

conformation.  

We also confirmed that the presence of an N-terminal His-tag does not promote 

PrP denaturation or aggregation by using CD and dynamic light-scattering 

(Supplementary Methods; figs. S26 and S27). After His-tag cleavage, 92% of PrP(23-
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230) and 97% of PrP(90-230) remained in a monomeric state (fig. S26) and had α-helix 

contents of 43% (fig. S27). Finally, it is important to note that the Cu2+ ion induced 

structural conversion of full-length PrP is not an artifact arising from the presence of His-

tag since the globular PrP constructs, which also contain an identical His-tag, do not show 

a Cu2+ induced misfolding and aggregation. 

Since the prion hypothesis proposes that misfolded seeds can template the 

aggregation of normal PrP into amyloid fibrils, we tested if PrP exposed to different 

divalent ions can serve as seeds using RT-QuIC. Our data showed that a more rapid 

onset of aggregation was measured as the seed concentration increased. This correlation 

is predicted by theory and has previously been used to quantify the aggregation kinetics 

of two major forms of amyloid-beta peptides [30, 51].  

Several studies have shown that different synthetic prion fragments promote 

neuroinflammatory and apoptotic responses in neuronal cells without evidence of being 

infectious [52-54]. Therefore, to investigate the neurotoxic effect of Cu2+ induced 

misfolded-PrP, we employed a mouse organotypic slice culture assay, which had been 

previously adopted as an excellent ex vivo model of progressive neurodegenerative 

disorders [35, 55]; a key advantage of this platform is that intact tissue explants preserve 

the basal cellular and molecular environment of local circuits similar to that of the whole 

brain. In the CNS, many neuropathological disorders are characteristically accompanied 

by activation and proliferation of glial cells that promote neuroinflammation, which is 

initiated relatively early in the disease process [56-59]. Consistent with this, we observed 

an increase in the levels of the neuroinflammatory marker GFAP, upon exposing brain 

slices to misfolded PrP. Furthermore, since oxidative stress is a critical initiator of 
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neurotoxic insult [32-35], we analyzed the expression of the oxidative stress-sensitive 

kinase PKC-δ; notably, an increase in PKC-δ expression was measured when we 

exposed brain slice cultures to PrP amyloids. Finally, consistent with the finding that 

activated PKC-δ triggers the redistribution and activation of Bax, a Bcl-2 family protein 

that can directly induce cytochrome c release and the downstream apoptotic cascade [60, 

61], we observed markedly increased levels Bax, in brain slices exposed to misfolded 

PrP. Overall, our experiments demonstrate the neurotoxicity of amyloidogenic structures 

resulting from prion protein interaction with Cu2+ ions. The neuronal cell death we 

observed in the mouse organotypic slice culture assay directly confirms the effect of 

abnormal prion protein, ruling out any role for the minuscule amount of Cu2+ ions (100 

nM) in the oligomeric protein solution (fig. S13). In fact, copper-induced neurotoxicity 

normally requires concentrations ranging from 0.1 – 1 mM in ex vivo and in vivo 

experimental models [62, 63]. 

While its physiological function is still uncertain, it has been proposed that cellular 

PrP plays a role in regulating Cu2+ homeostasis [64-66] and protecting neurons against 

apoptosis induced by Bax [67]. Previous studies show that PrP is associated with Cu2+ 

ions in vivo [9, 68]. While the average Cu2+ concentration in the human brain is about 80 

μM [65], concentrations as high as 1.3 mM and 0.4 mM are found in the  locus ceruleus 

and the substantia nigra respectively [69]. Consequently, our experimental conditions 

mimic these physiological Cu2+ concentrations. Our data suggests that an excess of Cu2+ 

ions contributes to the structural instability and oligomerization of cellular PrP and induces 

neuroinflammation and neurodegeneration. 
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2.5 Materials and Methods 

2.5.1 PrP constructs used  

We used recombinant, full-length, human PrP that was either purified in house 

(PrP(23-230)) or purchased commercially (PrP(23-231); Jena Bioscience). The 

biophysical properties of full-length PrP was compared with home grown, (PrP(90-230)) 

or commercially obtained (PrP(90-231); Jena Bioscience) globular PrP. 1H-NMR spectra 

showed that the structure of PrP(23-231) and PrP(90-231) are similar to PrP(23-230) and 

PrP(90-230) respectively (Supplementary Results; figs. S16 to S19). Plasmids for 

recombinant human PrP(23-230) and PrP(90-230) with an N-terminal histidine tail and an 

engineered thrombin cleavage site were a generous gift from Prof. Kurt Wüthrich 

(University of Zürich, Switzerland) [70]. The PrP constructs were expressed and purified 

as described previously with minor modifications [71]. Expression of human PrP(23-230) 

and PrP(90-230) proteins were performed in E.coli BL21(DE3) in a pRSET-A vector 

expression system. At OD600 = 0.5, prion protein expression was induced with isopropyl 

β-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM; after 8 hours of IPTG 

induction, bacterial cell pellets were harvested by centrifugation. Cell lysis was carried in 

25 mL buffer A (6M GdmCl, 10 mM Tris-HCl, 100 mM Na2HPO4, 10 mM reduced 

glutathione, pH 8.0). The lysate was incubated with 5 mL Ni-NTA agarose beads (Qiagen) 

on a rocking shaker at room temperature for 1 hour; 5 mM imidazole for PrP(90-230) or 

10 mM imidazole for PrP(23-230) was added during the incubation to prevent the non-

specific binding of protein. The resin was transferred to a column and the beads were 

washed with a 200 mL gradient of buffer A to buffer B (10 mM Tris-HCl, 100 mM Na2HPO4, 

pH 8.0) to induce PrP refolding. The column was washed with 20 mL of buffer B plus 50 
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mM imidazole at 4 °C and PrP was eluted with buffer C (10 mM Tris-HCl, 100 mM 

Na2HPO4, 500 mM imidazole, pH 5.8) and dialyzed against 10 mM sodium phosphate 

buffer, pH 5.8. Protein concentrations were determined by Bradford protein assay using 

bovine serum albumin (BSA) as reference. Protein fractions collected after elution were 

assayed for presence and purity of prion protein using SDS-PAGE with Krypton 

fluorescent protein staining (Pierce) and with Western blot analysis using either POM1 

(Prionatis AG) or SAF32 (Cayman Chemical) [72, 73] (Fig. 1C). The purified PrP was 

stored at 4 °C and used within one month. 

  

2.5.2 Surface and AFM tip functionalization and PrP immobilization 

The protocols for functionalization of AFM cantilevers and substrates for AFM-FS 

experiment have been described elsewhere [74, 75]. Silicon nitride AFM cantilevers 

(Olympus) and glass substrates (Fisher) were sequentially cleaned in a solution of 

piranha (H2SO4:H2O2 in 3:1 vol/vol ratio), deionized water and acetone. The cantilevers 

and substrates were then silanized using a 2% (vol/vol) 3-aminopropyltriethoxysilane 

(Sigma) solution in acetone for 30 minutes and functionalized with a monolayer of 

maleimide-PEG (maleimide-PEG-succinimidyl valerate; MW 3,400; Laysan Bio). For PK 

digestion experiments, glass-coverslips were functionalized with a mixture of 20% 

maleimide-PEG and 80% mPEG-succinimidyl valerate (MW 2,000; Laysan Bio). Prior to 

PrP immobilization, the disulfide bond was reduced with an equal volume of 10 mM tris(2-

carboxyethyl)phosphine (TCEP) for 3 hours at 4 °C. The reduced PrP(23-231) or PrP(90-

231), at a concentration of 1 g/mL, was incubated on the surface in reaction buffer (50 

mM sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH7.2) for 1 or 4 hours respectively 
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at room temperature. Unlinked maleimide groups were quenched using 1 mM cysteine 

and 10 mM TCEP in reaction buffer overnight at 4 °C. 

  

2.5.3 Proteinase-K digestion experiments 

Biotinylation of PrP for fluorescence measurements was performed by mixing 10 

mM Sulfo-NHS-LC-Biotin (Thermo Scientific) with 10 g/mL of human recombinant 

PrP(23-231) or PrP(90-231) in reaction buffer for 3 hours at 4 °C. The reaction was 

quenched by adding 1 mg/10L L-Lysine (Sigma) for 1 hour at room temperature. The 

biotinylated PrP was immobilized on PEG functionalized glass coverslips and incubated 

overnight either with or without 1 mM Mn2+, 1 mM Ni2+ or 1 mM Cu2+. Following incubation, 

the divalent ions were washed away and the immobilized PrP was treated with 100 g/mL 

PK (Sigma) in buffer (25 mM Tris-HCl, 5 mM CaCl2, 1 mM EDTA, pH 7.4) for different 

time courses at 37 °C. Following PK digestion, the PrP was labeled using 0.7 g/mL 

Alexa-555 conjugated streptavidin (Invitrogen) for 10 minutes at room temperature and 

rinsed with buffer (25 mM Tris-HCl, 100 mM NaCl, pH 7.4). Prior to incubation with 

fluorescent streptavidin, the substrate was incubated with BSA (1 mg/mL, 2 hours) to 

minimize non-specific fluorescence background. For every measurement, a blank-control 

sample without PrP was prepared in parallel using an identical protocol. A 3’ 

Tetramethylrhodamine (TMR) modified DNA (IDT) was used as positive-control because 

of its resistance to PK digestion. The 5’ terminal of the DNA was modified by di-thiol for 

surface immobilization. A biotin-conjugated BSA (Sigma), which is sensitive to PK 

digestion, was used as negative-control. A 50 nM solution of biotin-BSA was immobilized 

on maleimide PEG as described above. 
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For each time point, eight to twenty fluorescence images were acquired for both 

the fluorescent samples (either experiment, positive-control or negative-control) and the 

blank-control samples. We randomly selected one image each from the fluorescent and 

blank-control datasets and recorded their difference in fluorescence intensity. This 

process was repeated 100,000 times. The mean and standard deviation of these values 

were normalized to the intensity of an identically prepared sample without PK treatment. 

 

2.5.4 Single molecule AFM-FS 

Force-ramp experiments were performed in a pH 7.4 measurement buffer (25 mM 

Tris-HCl, 100 mM NaCl) using an Agilent 5500 AFM system with closed-loop scanner. 

The AFM tip and substrate were brought into contact for 0.1 sec, then withdrawn at 6 or 

11 different speeds ranging from 27 nm·sec-1 to 10,000 nm·sec-1. Cantilever spring 

constants were measured using the thermal fluctuation method. Force measurements 

were performed continuously for 24 hours at room temperature; a LabView script allowed 

us to operate the AFM in an automated mode to eliminate operator bias. For every 

experiment performed with divalent metal ions, we first acquired data for 24 hours in the 

measurement buffer and then acquired data for the next 24 hours in a pH 7.4 buffer with 

1 mM divalent metal ions (25 mM Tris-HCl, 97 mM NaCl, 1 mM NiCl2/MnCl2 /CuCl2) to 

enable a direct comparison. Prior to the experiment, the AFM cantilever and substrate 

functionalized with PrP were incubated in 1 mg/mL BSA for 3 hours to minimize 

nonspecific protein adhesion. Each unbinding force trace was fitted to an extended freely-

jointed chain (FJC) model (Eq. 1) [25] which describes the stretching of a polymer, L, 

under stretching force, F.  
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𝐿 = 𝐿𝐶 × (𝑐𝑜𝑡ℎ (
𝐹𝐿𝐾

𝑘𝐵𝑇
) −

𝑘𝐵𝑇

𝐹𝐿𝐾
) +

𝐹𝐿𝐶

𝐿𝑚𝐾𝑆
   (1) 

The model contains only one fitting parameter: the contour length of polyethylene glycol 

(PEG) tethers, LC. The values of all other parameters were obtained from the literature 

[25]. We used a value of 0.7 nm for LK (the Kuhn length of PEG), 0.2837 nm for Lm (the 

average length of a PEG monomer) and 150,000 pN/nm for KS (the stiffness of a PEG 

monomer). Force curves were fit using a total least squares (TLS) fitting protocol; 

goodness of fit was estimated from the residuals. For each experimental condition, the 

distribution of LC from selected events was fitted to a Gaussian distribution. Only events 

with fitted LC within the range of Gaussian center +/- one standard deviation were used 

to calculate the probability of interaction and off-rate. 

  

2.5.5 Calculation of relative on-rates 

The detailed derivation of the formulas used for the calculation of relative on-rates 

can be found in [27]. Briefly, the specific binding probability was calculated as 

Pcorrected=(Pm-Pcontrol)/(1-Pcontrol), where Pm is the measured binding probability when PrP 

is immobilized on both tip and substrate and Pcontrol is the measured binding probability 

when PrP is immobilized only on the substrate. The average number of bonds formed 

between opposing PrPs during each tip-substrate contact is a function of contact area 

between AFM tip and substrate Ac, the protein density on opposing surfaces a and b, 

the contact time t and the on-rate kon and off-rate koff. Their mathematical relation is given 

by -ln(1-Pcorrected) = Acab(1-e-koff t)kon/koff   Acab t kon. Assuming Ac, a, b are fixed, the 

on-rate kon is proportional to -ln(1-Pcorrected). 
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2.5.6 RT-QuIC assay 

PrP seeds for the RT-QuIC assay were created by incubating 6 M of PrP with 10 

M divalent metal ions (NiCl2/MnCl2/CuCl2) in Thioflavin T (ThT) assay buffer (20 mM 

Tris-HCl, 150 mM NaCl, 10 M ThT, pH 7.4). The sample was incubated in a Cytation3 

multi-mode microplate reader (BioTek) at 37°C for 64-95 hours with continuous cycles of 

1-min shaking alternating with 1-min resting periods. The formation of prion seeds was 

detected as an increase in ThT fluorescence intensity, which was measured every 15 

min.  Seeds were created with 3 replicates for each condition. The PrP(23-230) seeds 

were serially diluted to a final amount of 1.5 ng, 150 pg, 15 pg, 1.5 pg or 150 fg in 10 L 

of buffer (20 mM Tris-HCl, 150 mM NaCl, pH 7.4). Reactions were prepared in a black 

96-well, optical-bottomed plate (Nunc) with 90 L of RT-QuIC master mix (final 

concentration of 20 mM Tris-HCl, 150 mM NaCl, 10 M ThT, 1 mM EDTA and 6 M of 

recombinant human PrP(23-230), pH 7.4) and then 10 L of seed were loaded into wells. 

Sealed plates were inserted into a Cytation3 multi-mode microplate reader, incubated at 

37ºC and shaken intermittently (1-min shake/rest cycle) at 807 cpm in a double orbital 

configuration for 71-95 h. ThT fluorescence was recorded every 15 min throughout the 

experiment. In each experiment, 3-5 replicates of blank samples (150 mM NaCl, 10 uM 

ThT, 1 mM EDTA and 20 mM Tris-HCl, pH 7.4) were used. Experimental samples using 

seeds generated in either NiCl2/MnCl2 or CuCl2 were examined in RT-QuIC assay with 4 

and 5 replicates, respectively. For the same seeding condition, fluorescence intensity was 

averaged across 3-5 replicates, followed by baseline subtraction and robust locally 

weighted scatterplot smoothing. The duration of lag phase (Tth) was determined from the 

point where the ThT fluorescence intensity first reached a threshold value, where the 
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presence of amyloid can be detected [31]. This threshold was defined as 5x standard 

deviation of the fluorescence intensity from blank sample. Standard error of mean of Tth 

was calculated using a bootstrap with replacement protocol. 

  

2.5.7 Organotypic slice culture assay and analysis 

All procedures involving animal handling were approved by the Institutional Animal 

Care and Use Committee (IACUC) at Iowa State University and conducted in compliance 

with Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) 

accreditation. Organotypic slice cultures were prepared as previously described with 

some modifications [34, 55]. Briefly, 9–12 day-old C57BL/6 pups were anesthetized using 

isoflurane and after decapitation, brains were quickly removed and brain blocks were 

prepared in 2% (w/v) low-melting-point agarose (Invitrogen 15517–022) in HBSS. Once 

the agarose was cooled on ice, 350-µm thick cortical-striatal slices were prepared using 

a Compresstome™ Vf-300 microtome (Precisionary Instruments Inc.). Slices were 

transferred to Millicell-CM Biopore PTFE membrane inserts (Millipore PICM03050) and 

maintained in slice culture medium (50% MEM, 25% Basal Eagle medium, 25% horse 

serum, 0.65% glucose supplemented with penicillin/streptomycin and glutamax) in a 

humidified 37 °C incubator with 5% CO2 and 95% air for 7 days. The PrP(23-230) seeds 

used in the organotypic assay were prepared similarly to seeds used in the RT-QuIC 

assay except that ThT was not used in the buffer. Seed materials were incubated and 

shaken using a thermomixer as same condition as the ThT assay either in the presence 

(PrP-Cu2) or absence (PrP-No Metal) of Cu2+ ions. A separate ThT assay was carried out 

in parallel in order to monitor the seeds formation. The formation of PrP-No Metal and 
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PrP-Cu2+ seeds were terminated when we observed the increase of ThT fluorescence in 

the ThT assay. After one week, organotypic slice cultures were exposed to 10μL of the 

seed in 1ml of slice culture medium for 48hr and 90% of the media was exchanged every 

other day for another week. At the end of the treatment, slices were collected, washed 

with PBS and whole cell tissue lysates were prepared using modified RIPA buffer 

containing protease and phosphatase inhibitor cocktail (Thermo Scientific, Waltham, MA), 

as described previously [35, 76-78]. Western blot analysis on the lysates were performed 

using GFAP (1:2000; Millipore), Bax (1:1000; Cell signaling) or PKCδ (1:1000; Santa 

Cruz) antibodies. To confirm equal protein loading, blots were re-probed with β-actin 

(1:15000; Sigma) antibody. 
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2.9 Supplementary Materials 

Supplementary Methods 

PrP surface density estimation: PrP surface density was determined using a calibration 

plot of fluorescence intensity vs. number of fluorescent-streptavidin (figs. S1 and S2). 

Cleaned glass coverslips were functionalized with 1 mg/mL biotin-conjugated BSA 

(Sigma) and incubated with Alexa-555 conjugated streptavidin (Invitrogen) at different 

concentrations (0.1-1 g/mL). After rinsing with buffer (25 mM Tris-HCl, 100 mM NaCl, 
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pH 7.4), the sample was imaged on a home-built, single molecule sample scanning 

confocal fluorescence microscope. The number of immobilized fluorescent streptavidin 

was varied by changing incubation time (1-10 minutes); molecules in each 20x20 m 

image were counted (fig. S1, B and C) and the total fluorescence intensity was measured. 

Background fluorescence intensity was estimated from the averaged integrated 

intensities of nine control samples without any fluorescent streptavidin (fig. S1A); this 

background intensity was subtracted from the intensity of all measured images. A 

calibration plot was generated using 24 images and fit to a first order polynomial (fig. S2). 

When biotinylated PrP was immobilized on the surface and decorated with 

fluorescent streptavidin, the integrated fluorescence intensity of the image was recorded 

and the PrP surface density was determined using the fitted coefficients of the calibration 

plot. Since each PrP has 8-11 primary amine groups that can be labeled with biotins, 

every PrP was functionalized with at least 1 biotin. Furthermore, because streptavidin is 

two times larger in size than a PrP, no more than one streptavidin could bind to a single 

immobilized PrP. Consequently, when the immobilized, biotinylated PrP was incubated 

with fluorescent streptavidin, the fluorescence intensity saturated after 10 minutes and 

did not increase further even when the incubation period was lengthened by an order of 

magnitude.  

 

NMR spectroscopy: One-dimensional 1H-NMR spectra of purified PrP(23-230) and 

PrP(90-230) were recorded on a Bruker Avance II 700 spectrometer at a 1H-frequency of 

700 MHz at 20 °C with an acquisition time of 1.47 sec and the sweep width of 11,161 Hz 

(figs. S18 and S19). Samples were concentrated by using Centriprep®  centrifugal filter 
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with 10 kDa membrane (EMD Millipore) at 1,000x g to a final concentration of 80 M for 

PrP(23-230) and 90 M for PrP(90-230). Spectra were measured before and after adding 

5 mM TCEP as reducing agent in a mixed solvent of 95% H2O/ 5% D2O and 10 mM 

sodium phosphate buffer, pH 5.8 (figs. S18 to S21). The spectra were analyzed by using 

the program Topspin 2.1 (Bruker). For PrP(23-231) and PrP(90-231), 1H-NMR NMR 

spectra were acquired on an 800 MHz Varian spectrometer (Agilent) at 20 °C by Jena 

Bioscience (figs. S16 and S17). The protein concentration was 50 M in 10 mM sodium 

acetate buffer, pH 4.5.  

To confirm that PrP remained natively folded after PEG functionalization, 1H-NMR 

spectra was measured for 21 M PrP(23-230) in 10 mM sodium phosphate buffer at pH 

7.2. The PrP(23-230) was first incubated with 630 μM TCEP at 4 °C for 3 hours and 

subsequently incubated with 210 μM maleimide-PEG at 20 °C for 1 hour (figs. S22 and 

S23). The measured spectra was compared to 1H-NMR spectra acquired from a sample 

containing an identical concentration of PrP(23-230) and maleimide-PEG, but lacking 

TCEP. Similarly, 1H-NMR spectra was measured for 141 M PrP(90-230), incubated with 

4.2 mM TCEP and 1.4 mM maleimide-PEG. The PEG-functionalized PrP(90-230) spectra 

was compared to an identically prepared control sample lacking TCEP. D2O (final 

concentration 5%) was added right before the measurement.  

 

Dynamic light scattering: Dynamic light scattering measurements (DLS) were 

performed at 20 °C on Zetasizer Nano ZS (Malvern) using disposable cuvette. The 

translational diffusion coefficients of protein molecules were derived from the 

autocorrelation function of scattered light intensity. Particle sizes and size distributions 
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were analyzed by using software Zetasizer (Malvern). DLS experiments testing the effects 

of disulfide bond reduction and maleimide-PEG functionalization was carried out with 

protein that was 3 weeks old (fig. S25). Protein concentration was 15.6 M for PrP(23-

230) and 105 M for PrP(90-230) in 10 mM sodium phosphate buffer, pH 7.2. 

Measurements were performed in three different conditions: before and after incubating 

with 1 mM TCEP at 4 °C for 3 hours and after further incubating with 300 M maleimide-

PEG at 20 °C for 3 hours. As a reference, a control sample containing only 300 M 

maleimide-PEG incubated with 1 mM TCEP at 20 °C for 3 hours was measured.  

Experiments on the effects of protein aging and the role of the N-terminal his-tag 

were performed with 5.2 M of 2-month-old PrP(23-230) and 9.1 M of 2-month-old 

PrP(90-230) (fig. S26). Measurement were performed before and after incubating with 

0.1 unit/mL thrombin enzyme at 20 °C for 1 hour [71]. The cleavage of His-tag was 

confirmed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

(fig. S26A).  

 

Circular dichroism (CD) spectroscopy: CD spectra of 5 M PrP(23-230) or 5 M 

PrP(90-230) in 10 mM sodium phosphate buffer, pH 7.2 was measured before and after 

reduction with 150 M TCEP at 4 °C for 3 hours. Samples were further incubated with 50 

M maleimide-PEG at 20 °C for 1 hour and CD spectra was re-recorded (fig. S15). The 

spectra were acquired at 4 °C on a JASCO J-715 spectrometer (JASCO), using a water-

cooled quartz cuvette. Three spectra were recorded in 0.2 nm intervals from 180 to 260 

nm for each sample and then averaged over three scans for each sample. Secondary 

structure was calculated using K2D algorithm with the online server DICHROWEB [46]. 
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To study the effect of the N-terminal His-tag on secondary structure, we cleaved the His-

tag by incubating 2-month-old PrP with 0.1 unit/mL thrombin enzyme at 20 °C for 1 hour 

(figs. S26A and S27). The effect of age on secondary structure was tested under identical 

data acquisition conditions using 2 month old PrP (fig. S27).  

To study the thermal stability of PrP(23-230) and PrP(90-230) before and after 

pegylation (fig. S24), CD signal at 222 nm was recorded every 2 °C from 44 to 88 °C at a 

rate of 0.4 °C per minute. The melting temperature (Tm) was calculated by fitting data to 

a two-state transition model of a PrP converting between folded and unfolded forms. The 

data was corrected for pre- and post-transition linear changes in ellipticity as a function 

of temperature [48]. 

 

Supplementary Results  

NMR spectroscopy: The one-dimensional 1H-NMR spectra of PrP(23-231) and PrP(90-

231) (figs. S16 and S17) and PrP(23-230) and PrP(90-230) (figs. S18 and S19) share 

several common features. Their chemical shift dispersion is typical for natively folded 

prion protein (PrP). The resonance lines near 0 ppm indicate that the globular C-terminal 

domain is conserved and PrP are folded natively [71]. Higher indole N-H resonance lines 

near 10 ppm are observed in the spectra of full-length PrP due to the tryptophan residues 

located in the unstructured N-terminal tail [71]. The differences between PrP(23-231) and 

PrP(23-230) or between PrP(90-231) and PrP(90-230) are largely due to the different 

signal-to-noise ratios. The difference in intensity in the range of 7.5 to 9 ppm is caused 
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by differences in pH. Overall, 1H-NMR spectra indicate that the structure of PrP(23-231) 

and PrP(90-231) are similar to PrP(23-230) and PrP(90-230) respectively. 

In AFM and PK digestion experiments, the disulfide bond between Cys179 and 

Cys214 was reduced in order to tether PrP molecules to the surface. To examine if 

reduced PrP remains in its native conformation, 1H-NMR spectra of PrP(23-230) and 

PrP(90-230) were measured in the presence of reducing agent (figs. S20 and S21) and 

in the presence of maleimide-PEG (figs. S22 and S23). The spectra were nearly identical 

to the spectra without reducing agent, indicating that the native structure of PrP was not 

altered when the disulfide bond was reduced or when the Cys residues were linked to a 

PEG tether. 
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Figure S1. Fluorescence images with different amount of fluorescent streptavidin 
on the substrate. (A) Control sample with biotin-conjugated bovine serum albumin on 
the substrate without streptavidin; (B) with 96 and (C) 195 streptavidin molecules on the 

substrate. Scan size: 20x20 m. 

 

 

 
 
Figure S2. Calibration plot of number of streptavidin vs. fluorescence intensity. A 
total of 24 images with different streptavidin densities were used to generate this 
calibration plot. The slope and intercept of the least-squares regression line (red line) 
allowed us to estimate the number of prion proteins in each experiment, from their 
corresponding fluorescence intensity. 
 

(A) (B) (C) 
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Figure S3. Histogram of unbinding force for PrP(23-231) measured in the absence 
of divalent ions. The histogram of rupture forces measured at pulling speed (A) 27 nm/s 
(B) 74 nm/s (C) 200 nm/s (D) 556 nm/s (E) 2000 nm/s and (F) 10000 nm/s. The bin width 
of histogram is determined by Freedman-Diaconis rule. The kernel density estimation of 
each force distribution is fitted to a Gaussian equation (black line): f(x)=A*exp(-(x-
x0)2/2σ2).  
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Figure S4. Histogram of unbinding force for PrP(23-231) measured in 1 mM Mn2+. 
The histogram of rupture forces measured at pulling speed (A) 27 nm/s (B) 45 nm/s (C) 
74 nm/s (D) 122 nm/s (E) 200 nm/s (F) 333 nm/s (G) 556 nm/s (H) 1000 nm/s (I) 2000 
nm/s (J) 5000 nm/s and (K) 10000 nm/s. The bin width of histogram is determined by 
Freedman-Diaconis rule. The kernel density estimation of each force distribution is fitted 
to a Gaussian equation (black line): f(x)=A*exp(-(x-x0)2/2σ2). 
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Figure S5. Histogram of unbinding force for PrP(23-231) measured in 1 mM Ni2+. 
The histogram of rupture forces measured at pulling speed (A) 27 nm/s (B) 74 nm/s (C) 
200 nm/s (D) 556 nm/s (E) 2000 nm/s and (F) 10000 nm/s. The bin width of histogram is 
determined by Freedman-Diaconis rule. The kernel density estimation of each force 
distribution is fitted to a Gaussian equation (black line): f(x)=A*exp(-(x-x0)2/2σ2). 
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Figure S6. Histogram of unbinding force for PrP(23-231) measured in 1 mM Cu2+. 
The histogram of rupture forces measured at pulling speed (A) 27 nm/s (B) 74 nm/s (C) 
200 nm/s (D) 556 nm/s (E) 2000 nm/s and (F) 10000 nm/s. The bin width of histogram is 
determined by Freedman-Diaconis rule. The kernel density estimation of each force 
distribution is fitted to a Gaussian equation (black line): f(x)=A*exp(-(x-x0)2/2σ2). 
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Figure S7. Formation of PrP(23-230) seeds monitored in real time using Thioflavin 

T (ThT) fluorescence intensity.  Seeds were generated by incubating 6 M human 

recombinant PrP(23-230) with 10 M ThT (A) in the absence of divalent ions or in the 

presence of either (B) 10 M Mn2+ (C) 10 M Ni2+ or (D) 10 M Cu2+ in a pH 7.4 buffer 
(20 mM Tris-HCl, 150 mM NaCl). Formation of PrP seeds was monitored in real time from 
an increase in ThT fluorescence intensity. In the presence of 10 μM divalent ions, PrP(23-
230) seeds started forming within 15 to 25 hours. In contrast, without divalent ions, ThT 
fluorescence start increasing only after 55 hours. Traces represent baseline corrected, 
weighted averages across three replicates.  
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Figure S8. No seeds were formed when PrP(90-230) was incubated with divalent 
metal ions for 84 hours. Formation of PrP(90-230) seeds monitored in real time using 
Thioflavin T (ThT) fluorescence intensity. PrP(90-230) seeds were created by incubating 

6 M human recombinant PrP(90-230) with 10 M ThT in the presence of either (A) 10 

M Mn2+ (B) 10 M Ni2+ or (C) 10 M Cu2+ in a pH 7.4 buffer (20 mM Tris-HCl, 150 mM 
NaCl). Traces represent baseline corrected, weighted averages across three replicates. 

ThT fluorescence start increasing after 84 hours only in the presence of 10 M Mn2+. 
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Figure S9. Seeding activity of PrP(23-230) seeds generated in 10 μM Mn2+ measured 

using real-time quaking induced conversion (RT-QuIC). RT-QuIC traces for 15 g 
human recombinant PrP(23-230) substrate seeded with PrP(23-230) that had been pre-

exposed to 10 M Mn2+. Fluorescence signals from PrP aggregates were averaged 
across four replicates and baseline corrected. The shaded area corresponds to the 
average ± one standard deviation. Duration of the lag phase (Tth) was determined to be 
the time point where ThT fluorescence intensity first increased beyond a predetermined 
threshold (5 times the standard deviation of a blank samples without PrP seeds and 
substrate). The determined Tth are 19.5 ± 12.7 hr (1.5 ng), 20.5 ± 0.6 hr (150 pg), 14.7 ± 
1.7 hr (15 pg), 13.7 ± 0.5 hr (1.5 pg) and 11.2 ± 0.5 hr (150 fg). Error corresponds to 
standard error of mean was calculated using a bootstrap with replacement protocol. 
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Figure S10. Seeding activity of PrP(23-230) seeds generated in 10 μM Ni2+ measured 

using real-time quaking induced conversion (RT-QuIC). RT-QuIC traces for 15 g 
human recombinant PrP(23-230) substrate seeded with PrP(23-230) that had been pre-

exposed to 10 M Ni2+. Fluorescence signals from PrP aggregates were averaged across 
four replicates and baseline corrected. The shaded area corresponds to the average ± 
one standard deviation. Duration of the lag phase (Tth) was determined to be the time 
point where ThT fluorescence intensity first increased beyond a predetermined threshold 
(5 times the standard deviation of a blank samples without PrP seeds and substrate). The 
determined Tth are 20.5 ± 1.6 hr (1.5 ng), 21.3 ± 1.3 hr (150 pg), 24.1 ± 0.9 hr (15 pg), 
16.5 ± 0.7 hr (1.5 pg) and 23.3 ± 6.1 hr (150 fg). Error corresponds to standard error of 
mean was calculated using a bootstrap with replacement protocol. 
 

 

 

 

 

 

 

 



www.manaraa.com

59 
 

 

 

Figure S11. Seeding activity of PrP(23-230) seeds generated in 10 μM Cu2+ 
measured using real-time quaking induced conversion (RT-QuIC). RT-QuIC traces 

for 15 g human recombinant PrP(23-230) substrate seeded with PrP(23-230) that had 

been pre-exposed to 10 M Cu2+. Fluorescence signals from PrP aggregates were 
averaged across five replicates and baseline corrected. The shaded area corresponds to 
the average ± one standard deviation. Duration of the lag phase (Tth) was determined to 
be the time point where ThT fluorescence intensity first increased beyond a 
predetermined threshold (5 times the standard deviation of a blank samples without PrP 
seeds and substrate). The determined Tth are 5.8 ± 14.1 hr (1.5 ng), 11.2 ± 1.1 hr (150 
pg), 10.9 ± 0.7 hr (15 pg), 20.0 ± 2.1 hr (1.5 pg) and 14.7 ± 14.3 hr (150 fg). Error 
corresponds to standard error of mean was calculated using a bootstrap with replacement 
protocol. 
 

 

 

 

 

 

 

 



www.manaraa.com

60 
 

 

Figure S12. Formation of PrP(23-230) seeds using 1 μM Cu2+ and its corresponding 

seeding activity. (A) PrP(23-230) seeds were generated by incubating 6 M human 

recombinant PrP(23-230) with 10 M ThT in the presence of 1 M Cu2+ in a pH 7.4 buffer 
(20 mM Tris-HCl, 150 mM NaCl). Formation of PrP seeds was monitored in real time from 
an increase in ThT fluorescence intensity. Traces represent baseline corrected, weighted 
averages across three replicates. (B) Plot of lag phase duration for different amounts of 

PrP(23-230) seeds formed in 1 M Cu2+. The decrease in lag phase duration with 
increasing seed concentration is suggested by theory. 
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Figure S13. Residual copper upon addition of protein seed to brain slice culture, 
does not increase levels of PKC-δ and Bax. (A) Representative western blot of PKC-
δ and Bax. Organotypic slice cultures were untreated (control), exposed to either 100 nM 
Cu2+ or copper-induced PrP(23-230) seeds (PrP-Cu2+). (B) Quantification of Western blot 
band intensities show higher PKC-δ and Bax protein expression upon exposure to 
copper-induced prion oligomers. Each condition was repeated two times. 
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Figure S14. Biotinylation of PrP and functionalization with PEG tethers does not 
alter sensitivity to proteinase K (PK) digestion. The PK digests were monitored using 
SDS-PAGE. Under digestion conditions that are identical to those used in our single 
molecule PK resistance assay, both PrP(23-230) and PrP(90-230) were completely 
digested by PK before and after being biotinylated and tagged with PEG tethers. 
Biotinylation was performed by mixing either 10 μM of PrP(23-230) or 15 μM of PrP(90-
230) with 500 μM Sulfo-NHS-LC-Biotin in reaction buffer (50 mM sodium phosphate, 50 
mM NaCl, 10 mM EDTA, pH7.2) at 4 °C for 3 hours. The reaction was quenched by 
adding 5mM L-Lysine at 20 °C for 1 hour. Biotinylated PrP was reduced using 300 μM 
TCEP at 4 °C for 3 hours and then PEGylated using 100 μM maleimide-PEG at 20 °C for 
1 hour. Due to the 3.4 kDa molecular weight of the PEG tether, the pegylated PrP has a 
larger molecular weight. PK digestion was performed using 100 μg/mL PK at 37 °C for 3 
hours. 
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Figure S15. PrP(23-230) and PrP(90-230) remain in a native conformation after 
reduction of disulfide bond and functionalization with PEG tether. Secondary 
structure of PrP(23-230) and PrP(90-230) before and after TCEP reduction and binding 
to PEG measured using Circular Dichroism. 5 µM PrP(23-230) and 5 µM PrP(90-230) in 
10 mM sodium phosphate buffer, pH 7.2 were reduced in 150 µM TCEP at 4 °C for 3 
hours and then incubated with 50 µM maleimide-PEG at 20 °C for 1 hour. Spectra was 
measured at 4 °C for each condition. Spectral deconvolution was performed using online 
server DICHROWEB. Secondary structure calculated from K2D is plotted. The measured 
α-helix content indicates that PrP retains its native structure even after disulfide bond 
reduction and binding to PEG.  
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Figure S16.  One-dimensional 1H-NMR spectra of PrP(23-231) shows that protein is 
in a natively folded conformation. 1D 1H-NMR spectrum of PrP(23-231) was acquired 
in 10 mM sodium acetate buffer at pH 4.5 using 800 MHz Varian spectrometer (Agilent). 

The protein concentration was 50 M. Spectrum was measured at 20 °C by Jena 
Bioscience. 
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Figure S17.  One-dimensional 1H-NMR spectra of PrP(90-231) shows that protein is 
in a natively folded conformation. 1D 1H-NMR spectrum of PrP(90-231) was acquired 
in 10 mM sodium acetate buffer at pH 4.5 using 800 MHz Varian spectrometer (Agilent). 

The protein concentration was 50 M. Spectrum was measured at 20 °C by Jena 
Bioscience. 
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Figure S18.  One-dimensional 1H-NMR spectra of PrP(23-230) shows that protein is 
in a natively folded conformation. 1D 1H-NMR spectrum of PrP(23-230) was acquired 
using Bruker Avance II 700 spectrometer at a 1H-frequency of 700 MHz. Spectrum was 

measured at 20 °C. Protein concentration was 80 M in 10 mM sodium phosphate buffer, 
pH 5.8. 
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Figure S19.  One-dimensional 1H-NMR spectra of PrP(90-230) shows that protein is 
in a natively folded conformation. 1D 1H-NMR spectrum of PrP(90-230) was acquired 
using Bruker Avance II 700 spectrometer at a 1H-frequency of 700 MHz. Spectrum was 

measured at 20 °C. Protein concentration was 90 M in 10 mM sodium phosphate buffer, 
pH 5.8. 
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Figure S20.  One-dimensional 1H-NMR spectra of PrP(23-230) after disulfide bond 
reduction shows that protein remains in a natively folded conformation. 1D 1H-NMR 
spectrum of PrP(23-230) was acquired using Bruker Avance II 700 spectrometer at a 1H-
frequency of 700 MHz. Spectrum was measured at 20 °C. Protein concentration was 80 

M in 5 mM TCEP and 10 mM sodium phosphate buffer, pH 5.8. 
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Figure S21.  One-dimensional 1H-NMR spectra of PrP(90-230) after disulfide bond 
reduction shows that protein remains in a natively folded conformation. 1D 1H-NMR 
spectrum of PrP(90-230) was acquired using Bruker Avance II 700 spectrometer at a 1H-
frequency of 700 MHz. Spectrum was measured at 20 °C. Protein concentration was 90 

M in 5 mM TCEP and 10 mM sodium phosphate buffer, pH 5.8. 
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Figure S22.  One-dimensional 1H-NMR spectra of PrP(23-230) linked to PEG tethers 
shows that the protein remains in a natively folded conformation. Spectra was 
acquired using Bruker Avance II 700 spectrometer at a 1H-frequency of 700 MHz. 

Spectrum was measured at 20 °C. Protein concentration was 21 M in 10 mM sodium 
phosphate buffer at pH 7.2. (A) Spectra for PrP(23-230) that was not covalently tagged 
with PEG. PrP(23-230) with intact disulfide bonds was incubated with 210 μM maleimide-
PEG at 20 °C for 1 hour. (B) Spectra for PrP(23-230) covalently functionalized with PEG 
tethers. The PrP(23-230) was first incubated with 630 μM TCEP at 4 °C for 3 hours to 
reduce disulfide bonds and subsequently incubated with 210 μM maleimide-PEG at 20 
°C for 1 hour. Spectra in (A) and (B) have similar chemical shift dispersions typical for 
natively folded PrP. 
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Figure S23.  One-dimensional 1H-NMR spectra of PrP(90-230) linked to PEG tethers 
shows that the protein remains in a natively folded conformation. Spectra was 
acquired using Bruker Avance II 700 spectrometer at a 1H-frequency of 700 MHz. 

Spectrum was measured at 20 °C. Protein concentration was 141 M in 10 mM sodium 
phosphate buffer at pH 7.2. (A) Spectra for PrP(90-230) that was not covalently tagged 
with PEG. PrP(90-230) with intact disulfide bonds was incubated with 1.4 mM maleimide-
PEG at 20 °C for 1 hour. (B) Spectra for PrP(90-230) covalently functionalized with PEG 
tethers. The PrP(90-230) was first incubated with 4.2 mM TCEP at 4 °C for 3 hours to 
reduce disulfide bonds and subsequently incubated with 1.4 mM maleimide-PEG at 20 
°C for 1 hour. Spectra in (A) and (B) have similar chemical shift dispersions typical for 
natively folded PrP. 
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Figure S24. Functionalization with PEG tethers do not alter the thermal stabilities 
of PrP(23-230) and PrP(90-230). Thermal unfolding transition curves of (A) PrP(23-230) 
and (B) PrP(90-230) before and after functionalization with PEG tethers were measured 
using Circular Dichroism (CD) at 222 nm. 5 µM PrP in 10 mM sodium phosphate buffer, 
pH 7.2 was reduced using 150 µM TCEP at 4 °C for 3 hours and subsequently incubated 
with 50 µM maleimide-PEG at 20 °C for 1 hour. CD signals were recorded every 2 °C 
from 44 to 88 °C at a rate of 0.4 °C per minute. The melting temperature (Tm) was 
calculated by fitting the CD data to a two-state transition model which assumes that PrP 
monomers convert between folded and unfolded forms. The fitted curves are plotted as 
solid lines. Tm of PrP(23-230) before and after functionalization with PEG tether are 61.4 
± 0.4 °C and 62.9 ± 0.7 °C. Tm of PrP(90-230) before and after functionalization with PEG 
tether are 65.1 ± 0.4 °C and 65.9 ± 0.8 °C. These results indicate that the thermal stability 
of PrP does not change after functionalization with PEG tethers. Error corresponds to 
standard error of fitting. 
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Figure S25. Reduction of disulfide bond and functionalization with PEG tether does 
not cause aggregation of PrP(23-230) and PrP(90-230). Size distribution of PrP(23-
230) and PrP(90-230) before and after reduction of disulfide bond and after 
functionalization with PEG was measured using dynamic light scattering. (A) Size 
distribution of PrP(23-230) and (B) PrP(90-230) in 10 mM sodium phosphate buffer at pH 
7.2 (black); after incubating with 1 mM TCEP at 4 °C for 3 hours (red), followed by 
incubation with 300 µM maleimide-PEG at 20 °C for another 3 hours (blue). Numbers 
inside parentheses indicate the percentage of PrP monomer. As shown in (C), the 
appearance of higher order peaks upon addition of maleimide-PEG are due to formation 
of maleimide-PEG aggregates and not due to PrP aggregation. (C) Size distribution of 
maleimide-PEG in the presence of 1 mM TCEP without any PrP. The additional peaks 
measured with reduced maleimide-PEG are responsible for the three peaks measured in 
(A) and (B). 
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Figure S26. Protein age and presence of N-terminal His-tag does not cause 
aggregation of PrP(23-230) and PrP(90-230). (A) Cleavage of His-tag was confirmed 
by SDS-PAGE. His-tag cleavage results in a 1.4 kDa reduction in the molecular weight. 
After incubation with 0.1 unit/mL thrombin enzyme at 20 °C for 0.5-2 hours, PrP was 
heated to 95 °C in 0.1 mM DTT for 5 mins to terminate the reaction before loading the 
gel. Result shows that His-tag is totally cleaved from PrP after incubation with thrombin 
for 1 hour. Size distribution of (B) PrP(23-230) and (C) PrP(90-230) in 10 mM sodium 
phosphate buffer at pH 7.2 were measured at 4 °C using dynamic light scattering. After 
purification, His-tagged PrP was stored at 4 °C for 3 weeks (black) and 2 months (red). 
The His-tag on the 2 month PrP was cleaved by incubation with 0.1 unit/mL thrombin 
enzyme at 20 °C for 1 hour (blue). Numbers in parentheses indicate the percentage of 
PrP monomer.  
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Figure S27. Protein age and presence of N-terminal His-tag does not alter the 
secondary structure of PrP(23-230) and PrP(90-230). Secondary structure of PrP(23-
230) and PrP(90-230) in 10 mM sodium phosphate buffer, pH 7.2 was measured using 
Circular Dichroism. The His-tagged PrP(23-230) and PrP(90-230) were stored at 4 °C for 
3 weeks and 2 months and then incubated with 0.1 unit/mL thrombin enzyme at 20 °C for 
1 hour to cleave the His-tag. Spectra was measured at 4 °C for each condition. Spectral 
deconvolution was performed using online server DICHROWEB. Secondary structure 
calculated from K2D is plotted. The measured α-helix content indicates that PrP retains 
its native structure under all measurement conditions. 
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Table S1. Surface density of PrP in PK digestion experiments 

Errors correspond to s.e. propagated from the fitting error in the calibration curve and the 
s.e. of fluorescence intensity estimation. 
 

PrP surface density 

(# of molecule/m2 ) 

PrP(23-231) PrP(90-231) 

No metal 3.11 ± 0.26 1.65 ± 0.25 

Mn2+ 0.53 ± 0.15 1.25 ± 0.26 

Ni2+ 1.86 ± 0.21 1.19 ± 0.23 

Cu2+ 1.00 ± 0.18 0.85 ± 0.18 

 

 

 

 

Table S2. Off-rate, relative on-rate and relative association constant (KA) for PrP(23-
231) binding 

On-rate and KA were normalized relative to the homotypic PrP(23-231) interactions in the 
absence of divalent ions. Errors in on-rate correspond to s.e., which were propagated 
from the s.e. of binding probability. 90% confidence intervals (CI) of off-rate were 
calculated using a bootstrap with replacement protocol. 90% CI of KA were calculated 
using a bootstrap with replacement protocol and the s.e. of on-rate were propagated. 
 

 Relative on-rate Off-rate (90% CI) Relative KA (90% CI) 

No metal 1.0 ± 0.1 3.1x10-2 (4.6x10-3 – 1.3 x 10-1) s-1 

± 

6 x 10-5 

1.0 (0.1 – 10.6) 

± 

0.1 

Mn2+ 2.6 ± 0.3 1.3x10-2 (2.9x10-3 – 4.6 x 10-2) s-1 

± 

3 x 10-4 

6.0 (0.6 – 46.6) 

± 

0.2 

Ni2+ 5.8 ± 0.7 1.0x10-2 (2.9x10-3 – 8.3 x 10-2) s-1 

± 

2 x 10-4 

17.7 (1.0 – 115.1) 

± 

0.2 

Cu2+ 6.3 ± 0.9 2.2x10-4 (2.9x10-6 – 3.0 x 10-3) s-1 

± 

9 x 10-7 

862.6 (33.1 – 78926.0) 

± 

83.4 
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CHAPTER 3. IMPROVING ESTIMATION OF KINETIC PARAMETERS IN 
DYNAMIC FORCE SPECTROSCOPY USING CLUSTER ANALYSIS 

A manuscript submitted to Biophysical Journal 

Chi-Fu Yen and Sanjeevi Sivasankar 
  

3.1 Abstract 

 Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the 

dissociation kinetics and interaction energy landscape of receptor-ligand complexes with 

single-molecule resolution. In an Atomic Force Microscope (AFM) based DFS 

experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, 

are ruptured at different stress rates by varying the speed at which the AFM-tip and 

substrate are pulled away from each other. The rupture events are grouped according to 

their pulling speeds and the mean force and loading rate of each group is calculated. This 

data is subsequently fit to established models and energy landscape parameters such as 

the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. 

However, due to large uncertainties in determining mean forces and loading rates of the 

groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that 

the accuracy of fitted parameters in a DFS experiment, can be dramatically improved by 

sorting rupture events into groups using cluster analysis instead of sorting them according 

to their pulling speeds. We test different clustering algorithms including Gaussian mixture, 

logistic regression and K-means clustering, under conditions that closely mimic DFS 

experiments. Using Monte Carlo simulations, we benchmark the performance of these 

clustering algorithms over a wide range of koff and xβ, under different levels of thermal 

noise, and as a function of both the number of unbinding events and the number of pulling 
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speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is 

very effective at improving the accuracy of parameter estimation, particularly when the 

number of unbinding events are limited and not well separated into distinct groups. 

Cluster analysis is easy to implement and our performance benchmarks serve as a guide 

in choosing an appropriate method for DFS data analysis. 

 

3.2 Introduction 

Dynamic force spectroscopy (DFS) experiments are widely used to characterize 

the dissociation kinetics and interaction energy landscape of protein-protein  interactions 

[1-3], DNA-protein binding [4, 5], and the aggregation of misfolded proteins [6, 7]. While 

these measurement can be performed using different micromanipulation tools including 

atomic force microscopy (AFM), micro-needle manipulation, optical tweezers and 

magnetic tweezers [8], AFM based DFS experiments are widely used because of their 

sub-nanometer spatial resolution [8]. 

In a typical DFS experiment, an AFM cantilever and substrate functionalized with 

flexible polymer linkers, are decorated with the biomolecules of interest (Fig. 1) [9]. The 

functionalized AFM tip and substrate are brought into contact, enabling opposing 

molecules to interact, and then pulled apart at a range of pulling speeds. The force applied 

to the protein complex is sensed by the deflection of the cantilever while the rate of applied 

force (the loading rate) is controlled by varying the separation-speed of the AFM tip and 

substrate. Histograms of rupture forces for each pulling speed are plotted to determine 

the most probable unbinding force; from the dependence of the rupture forces on loading 

rates, the energy landscape parameters of the system can be predicted [10, 11]. In the 
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Figure 1. Schematic of the experimental setup for an AFM based DFS 
measurement. (not to scale). A receptor and its binding partner are tethered to the AFM 
tip and substrate via poly(ethylene glycol) (PEG) linkers. The receptor ligand complex is 
ruptured by translating the tip away from the substrate with a piezoelectric actuator. 
During this process, force and tip-surface distance are recorded. 
 

widely used single barrier model, the intrinsic off-rate under zero force, koff and the width 

of energy barrier that inhibit protein dissociation, xβ are determined by fitting the most 

probable force at different loading rates to the Bell-Evans model:  

𝐹∗(𝑟) = 𝐹𝛽 ln(𝑟 (𝑘𝑜𝑓𝑓𝐹𝛽)⁄ )   (1) 

where F*(r) is the most probable unbinding force, r is the loading rate, 𝐹𝛽 = 𝑘𝐵𝑇 𝑥𝛽⁄ ,  kB is 

the Boltzmann's constant and T is the absolute temperature [10, 12]. To increase the 

quality of the fit, several pulling speeds are used so that the loading rates cover a large 

dynamic range [13, 14]. 
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 In order to measure single molecule binding, DSF experiments are typically 

designed such that the chance of observing a specific unbinding event is less than 10% 

[15]. Under these conditions, collecting enough events to recover the unbinding force 

distribution and accurately estimate the most probable unbinding forces before the 

sample degrades is often impractical. Consequently, the mean or median rupture force is 

commonly used for data analysis instead of the most probable force [16-18]. Alternatively, 

the most probable force is determined by fitting the force histograms to a Gaussian 

distribution [19]. However, due to thermal fluctuations, heterogeneity of chemical bonds, 

and ‘contaminating’ multiple unbinding and nonspecific adhesion events, the measured 

force distribution often varies from the theoretical model which decreases the accuracy 

of parameter estimation using the simplified mean or median force methods [20, 21]. This 

distortion is most pronounced in the prediction of koff, where errors are exponentiated with 

uncertainties of the same order of magnitude as the estimated value [22]. Different 

methods have been proposed to improve the accuracy of the estimated koff and xβ, such 

as fitting the force and loading rate distribution with a probability density function or 

introducing correction algorithms [23, 24]. However, a simple high-accuracy method to 

improve parameter estimation in DFS experiments, which retains the simplicity of using 

mean forces, is still lacking.  

To overcome this bottleneck, we use cluster analysis to group unbinding events 

and improve the accuracy of fitted koff and xβ in a typical DFS experiment. Cluster analysis 

is a widely used technique in identifying specific patterns from a large database, such as 

determining biologically relevant genes in microarray experiments [25], identifying similar 

behaviors in marketing research [26] and pattern recognition in computer vision [27]. 
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Here, we use three clustering models: Gaussian mixture, logistic regression and K-means 

to group single molecule unbinding events in DFS and to identify the most representative 

forces and loading rates for subsequent fitting. We simulated experimental data within a 

realistic range of koff, xβ, thermal noise, number of pulling speeds and number of events 

by performing Monte Carlo simulations. The simulated data was analyzed using both 

conventional analysis and cluster analysis and the performances of different methods 

were compared. We show that clustering algorithms greatly improve the estimation of koff 

and xβ, even with the amount of data is limited and where the unbinding events measured 

at multiple pulling speeds are not well separated from each other. 

 

3.3 Methods 

3.3.1 Force-Distance curve simulation 

 When a receptor-ligand complex is ruptured by withdrawing the cantilever away 

from the substrate using a piezoelectric actuator (Fig. 1), force-distance (FD) curves are 

the primary output of the measurement. We therefore simulated unbinding events as FD 

curves at a range of loading rates (Fig. 2). Our model parameters were chosen to relate 

the model in Figure 1 to a realistic DFS experiment. We assumed that the receptor and 

ligand were immobilized on an AFM tip and substrate through poly ethylene glycol (PEG; 

MW: 3,400 Dalton) linkers. Spring constant of the cantilever was set to 40 pN/nm since 

soft probes with 10 – 100 pN/nm stiffness are usually used to measure weak biological 

interactions [13]. The measurements were simulated to occur at 25 °C with 𝑘𝐵𝑇 equal to  

4.1 pN·nm throughout the study. In order to mimic a realistic DFS experiment where  
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Figure 2. Workflow for simulation of single molecule unbinding events. (a) An 
unbinding force greater than the force threshold (FTH) was randomly sampled from the 
probability distribution of force. FTH was set to 12.8 pN (FTH_0.5×), 25.6 pN (FTH_1×) and 
38.4 pN (FTH_1.5×) for conditions with 0.5×, 1× and 1.5× thermal noise, respectively. (b) 
For the sampled unbinding force, a Force-Distance (FD) curve was simulated at 500 kHz 
using the freely jointed chain model to account for the stretching of PEG linkers. (c) The 
noise in force and distance due to thermal vibrations of the AFM cantilever was added to 
the FD curve at each time point. The calculated noise was normally distributed with 
standard deviations of 6.4 pN, 12.8 pN or 19.2 pN in force and 0.16 nm, 0.32 nm or 0.48 
nm in distance, for conditions with 0.5× noise, 1× noise, and 1.5× noise respectively. (d) 
To determine the unbinding force and loading rate, we first smoothed the noisy FD curve 
using a 4 nm moving average window and estimated the spring constant of the molecule, 
Km, by fitting the last 0.5 nm data to a straight line. The loading rate was calculated by 
substituting Km into Eq. 4. The last force reading was used as unbinding force. (e) The 
calculated force and loading rate for each FD curve was recorded. (f) By repeating the 
process described in panels (b)-(e), the unbinding events for a DFS measurement were 
simulated. Colors represent different pulling speeds. 
 

 

 

(a) (b) (c) 

(e) (f) (d) 
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loading rates usually span only two to three orders of magnitude [13], we fixed the lower 

and upper bounds on loading rate to be 2,000 and 106 pN/sec.  

We first calculated the probability distribution of rupture forces, p(F), at a given 

loading rate, r, using the Bell-Evans model [10]:  

𝑝(𝐹) =
𝑘𝑜𝑓𝑓

𝑟
𝑒𝑥𝑝 [

𝐹

𝐹𝛽
−

𝑘𝑜𝑓𝑓𝐹𝛽

𝑟
(𝑒𝐹 𝐹𝛽⁄ − 1)]   (2) 

Since both the receptor and ligand were immobilized on the tip and substrate using 

flexible PEG linkers, a non-linear stretching of PEG tethers should be measured in each 

FD curve. We simulated the PEG stretching using the extended freely jointed chain model 

[28]: 

𝐷(𝐹) = 𝐿𝐶 × (coth (
𝐹𝐿𝐾

𝑘𝐵𝑇
) −

𝑘𝐵𝑇

𝐹𝐿𝐾
) +

𝐹𝐿𝐶

𝐿𝑚𝐾𝑠
   (3) 

where LC and LK are the contour length and Kuhn length of the PEG tethers and Lm and 

KS are the average length and stiffness of a PEG monomer. Based on previous studies 

[28], we used a  value of 43.6898 nm for LC, 0.7 nm for LK, 0.2837 nm for Lm and 150,000 

pN/nm for KS. We simulated FD traces using Eq. 3 at 500 kHz data acquisition rate, with 

an unbinding force randomly sampled from the probability distribution of force (Eq. 2) (Fig. 

2(a)-(b)).  

Since the thermal fluctuations of the cantilever, which are detected by the AFM’s 

Quadrant Photodiode (QPD) voltage, couple in as noise in both measured force and the 

calculated tip-surface distance, we calculated the  QPD voltage at each time point of the 

FD curve and calculated the noise in both force and tip-surface distance, using an optical 

lever sensitivity of 30 nm/V to correlate changes in the QPD voltage to cantilever 

fluctuations [29]. Since noise varies with factors such as AFM design, quality factor of 
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cantilever and environmental noise, we considered three levels of thermal noise in our 

simulations: 0.5×, 1× or 1.5×. We accounted for these three thermal noise levels by 

adding normally distributed noise with standard deviations of 6.4 pN, 12.8 pN or 19.2 pN 

in force and 0.16 nm, 0.32 nm or 0.48 nm in distance to the FD curve (Fig. 2(c)) [30]. In 

an actual DFS experiment, unbinding forces lower than a force threshold (FTH), which 

depends on the level of noise, cannot be detected. We accounted for this in our 

simulations, by setting an FTH value of 12.8 pN, 25.6 pN or 38.4 pN for conditions with 

0.5×, 1× or 1.5× thermal noise and only sampled forces greater than FTH (Fig. 2(a)). 

Next, we estimated the loading rate for each FD curve, by modeling the cantilever 

and PEG linker as two springs that were pulled in series. While the spring constant of 

cantilever, KC, was fixed, the spring constant of the PEG linker, Km, was calculated as the 

slope of the tangent line to the FD curve at the unbinding force. Consequently, the loading 

rate, r, was calculated as: 

𝑟 = 𝑉𝑝𝑢𝑙𝑙𝑖𝑛𝑔(𝐾𝐶𝐾𝑚 (⁄ 𝐾𝐶 + 𝐾𝑚))    (4) 

where Vpulling is the pulling speed. We smoothed the noisy FD trace using a moving 4 nm 

window and estimating the spring constant of molecule, Km, by fitting the last 0.5 nm data 

to a straight line (Fig. 2(d)). Loading rate was determined by substituting Km, KC and Vpulling 

into Eq. 4. To simulate the dataset for a DFS experiment, we generated FD curves for 

different pulling speeds and recorded their rupture forces (last force reading in FD curve) 

and loading rates (Fig. 2(e)-(f)). 
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3.3.2 Calculation of koff and xβ 

 The simulated rupture events were sorted into groups using four methods 

(described below); the number of groups were limited to be the number of pulling speeds. 

To extract koff and xβ, we determined the mean force and loading rate of each group and 

then fitted the mean force vs. loading rate to the Bell-Evans model (Eq. 1) using a 

nonlinear least-squares fitting with bisquare weights. Simulations were repeated 100 

times for each condition and koff and xβ were calculated for each simulation. Relative error 

in xβ was calculated as [𝑚𝑒𝑑𝑖𝑎𝑛(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑥𝛽) − (𝑝𝑟𝑒𝑠𝑒𝑡 𝑥𝛽)] [𝑝𝑟𝑒𝑠𝑒𝑡 𝑥𝛽]⁄ . Relative error 

in koff was calculated as [𝑒𝑚𝑒𝑑𝑖𝑎𝑛(𝑙𝑛(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑘𝑜𝑓𝑓) ) − (𝑝𝑟𝑒𝑠𝑒𝑡 𝑘𝑜𝑓𝑓)] [𝑝𝑟𝑒𝑠𝑒𝑡 𝑘𝑜𝑓𝑓]⁄ . The 

algorithms for clustering have been derived in ref. [27] and Matlab code was directly 

adopted from ref. [31]. The methods we used to group data include 

Method 1: Pulling speed. This is the standard method in DFS data analysis where 

unbinding events with the same pulling speed are grouped together.  

Method 2: Clustering using 2D Gaussian mixture model (GMM).  Forces and loading rates 

were normalized for GMM since the ranges they span can be dramatically different. Each 

unbinding force Fi was normalized using (Fi-Fmin)/(Fmax-Fmin), where Fmax and Fmin are the 

maximum and minimum values for force. Loading rate ri was normalized using (ln(ri)-

ln(rmin))/(ln(rmax)-ln(rmin)), where rmax and rmin are the maximum and minimum values for 

loading rate. As an initial guess for classification, events were grouped according to their 

loading rates; groups were assigned with equal number of events.  
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Method 3: Clustering using logistic regression model. Data was normalized as in Method 

2 and the initial guess was used as the training dataset for 2D logistic regression 

clustering. 

Method 4: Clustering using 1D K-means. Events were separated into groups based on 

the normalized loading rates. The initial guess was the same as in GMM.  

 

3.4 Results and Discussion 

3.4.1 Overview of cluster analysis   

 Cluster analysis is the process of sorting data into different groups such that events 

within the same category share similar characteristics. The main idea in applying this 

approach to a DFS experiment is that when a specific interaction is probed repeatedly 

using the same tip-sample pulling speed, the measured unbinding forces and loading 

rates are expected be similar within a certain noise level. Therefore, unbinding events are 

expected to form clusters on a force versus loading rate plot. The mean forces and loading 

rates calculated from the clustered events share common characteristics such that the 

influence of outliers are reduced. To test this idea, we simulated unbinding events to 

closely mimic a realistic DFS experiment and grouped the events either using cluster 

analysis algorithms or according to pulling speed (the standard DFS analysis method 

where the unbinding events are grouped according to the tip-surface retraction speeds). 

We used three clustering analysis approaches in this work: Gaussian mixture model 

(GMM), logistic regression and K-means (Methods) [27, 32].  

Our rationale in using GMM [27] is that since the rupture force distribution at a 

constant pulling speed resembles a skewed Gaussian with a long tail at low forces [10], 
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the distribution of forces collected with many pulling speeds can be approximated as a 

mixture of Gaussian distributions. GMM was used to assign each unbinding event to a 

group by maximizing the posterior probability that the data point belongs to its assigned 

cluster such that the force distribution within each group is most likely to be a Gaussian 

[27]. In contrast to GMM, logistic regression identifies the boundaries between groups 

based on a training dataset, while K-means partitions data into clusters by minimizing the 

distance from the data point to the mean of its assigned cluster [27, 32]. The theory and 

mathematical derivation of these methods are beyond the scope of this study; we merely 

adopt these clustering algorithms as data-analysis tools. 

 

3.4.2 Overlap of data increases with increasing koff, xβ, noise, number of data and 
pulling speeds  

 Since the goal of cluster analysis is to partition data into groups by relocating 

ambiguous events at the boundaries into their proper categories, this approach is 

beneficial when unbinding events across multiple pulling speeds overlap. To generate 

overlapping datasets, we first examined how each parameter in our simulation affects 

data overlap (Fig. 3).  

With a fixed range of loading rates, one would intuitively expect data overlap to 

increase with the number of pulling speeds, the number of unbinding events, and the level 

of thermal noise. To confirm this we first simulated a DFS experiment consisting of 600 

unbinding events across 6 pulling speeds, using a koff = 0.1 sec-1, xβ = 1 nm, and with 1× 

thermal noise (Fig. 3(a); Methods). Fixing all the other parameters in the simulation, we 

increased the number of pulling speeds (9 pulling speeds, Fig. 3(b)), decreased the 

number of events per pulling speed (30 events per pulling speed, Fig. 3(c)), decrease the 
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noise level (0.5× thermal noise, Fig. 3(d)), reduced the koff  (koff = 0.001 sec-1, Fig. 3(e)) 

and reduced xβ (xβ = 0.5 nm, Fig. 3(f)). As expected, the degree of data overlap increased 

with the number of pulling speeds, number of unbinding events and with a higher noise 

level (Fig. 3(a)-(d)). The simulated data also showed an increasing overlap as koff and xβ 

increased (Fig. 3(a), (e)-(f)).  

 

 

 

 

 

Figure 3. Unbinding events across multiple pulling speeds overlap when the 
number of pulling speeds, number of data points and thermal noise increases. (a) 
Data was simulated using koff = 0.1 sec-1, xβ = 1 nm, 6 pulling speeds, 100 events per 
pulling speed with 1× thermal noise. Colors represent different speeds. (b)-(f) Similar to 
panel (a), unbinding events were simulated while varying only one parameter at a time. 
Simulations were carried out with (b) 9 pulling speeds;  (c) 30 events per pulling speed; 
(d) 0.5× thermal noise; (e) koff = 0.001 sec-1; (f) xβ = 0.5 nm. Each circle represents one 
unbinding event. 
 

(a) 

(d) 

(b) 

(f) (e) 
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3.4.3 Cluster analysis improves the estimation of koff and xβ 

Next, we compared the accuracy of different cluster analysis methods and the 

standard pulling speed method on the estimation koff and xβ. An example dataset 

containing 270 simulated unbinding events evenly distributed over 9 tip-sample 

separation speeds with 1× thermal noise using koff = 0.1 sec-1 and xβ = 1 nm is shown in 

Figure 4 (Methods). The events were separated into 9 groups using either pulling speeds, 

GMM, logistic regression or K-means (Fig. 4; Methods).  The most probable unbinding 

forces and loading rates were calculated by averaging data within each group (Fig. 4, red 

squares); koff and xβ were then extracted by fitting those mean values to the Bell-Evans 

equation (Fig. 4, red lines). We performed simulations where only one parameter (either 

the thermal noise, number of unbinding events, number of pulling speeds, koff or xβ) was 

varied at a time, and the accuracy of different grouping methods on koff and xβ estimation 

was compared. When thermal noise, number of data points or pulling speeds were varied, 

the koff and xβ were fixed at 0.1 sec-1 and 1 nm, respectively. When the koff or xβ were 

varied, 9 pulling speeds and 30 unbinding events per speed with 1× thermal noise were 

used. Simulations for each condition were repeated 100 times and the statistical 

distribution of estimated koff and xβ were plotted (Fig. 5, 6). In the following discussion, we 

focus on estimated errors in koff since the estimation of xβ is accurate within 10% error in 

all analysis. 
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Figure 4. Visual comparison of different clustering algorithms used. Unbinding 
events were simulated using koff = 0.1 sec-1, xβ = 1 nm, 9 pulling speeds, 30 events per 
pulling speed with 1× thermal noise. Events were classified into different groups based 
on (a) pulling speeds; (b) Gaussian mixture cluster model; (c) logistic regression 
clustering; (d) K-means clustering. The results of grouping are indicated by colors. The 
average forces and loading rates (red squares) within each group were fit to the Bell-
Evans model (red line) to estimate koff and xβ. The estimated values are indicated. Black 
line represents the plot of Bell-Evans equation using koff = 0.1 sec-1, xβ = 1 nm. Differences 
between the different methods were observed at the boundaries between groups. 
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Figure 5. Evaluation of cluster analysis for estimating koff in DFS experiments. DFS 
data was generated using Monte Carlo simulations with koff = 0.1 sec-1, xβ = 1 nm, 9 pulling 
speeds, 30 events per pulling speed and with 1× thermal noise. Four classification 
methods (pulling speeds, Gaussian mixture cluster model, logistic regression clustering, 
and K-means clustering) were used and kinetic parameters were estimated using Bell-
Evans model. Simulations were repeated 100 times; the distribution of estimated koff are 
plotted. Red line represents the preset values of koff. The performance of methods was 
compared by varying (a) number of pulling speeds, (b) amount of data, (c) thermal noise, 
(d) koff and (e) xβ. Cluster analysis significantly improved koff estimation when the number 
of pulling speeds, number of unbinding events and the thermal noise increased. Cluster 
analysis was especially accurate at high dissociation rates and wide energy barriers. 
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Figure 6. Evaluation of cluster analysis for estimation of xβ. Unbinding events were 
generated using Monte Carlo simulations with koff = 0.1 sec-1, xβ = 1 nm, 9 pulling speeds, 
30 events per pulling speed and with 1× thermal noise. Pulling speeds, Gaussian mixture 
cluster model, logistic regression clustering, and K-means clustering were used to group 
data. Kinetic parameters were estimated using Bell-Evans model. Simulations were 
repeated 100 times. Red line represents the preset values of xβ. Clustering methods were 
compared by varying (a) number of pulling speeds, (b) amount of data, (c) thermal noise, 
(d) koff and (e) xβ. As in the case of koff estimates shown in figure 5, cluster analysis 
significantly improved xβ estimation when the number of pulling speeds, number of 
unbinding events, thermal noise, koff and xβ increased. 
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First, we tested koff estimation using different grouping methods when the number 

of pulling speeds were varied (6, 9, and 12 pulling speeds).  Our data showed that as the 

number of pulling speeds was increased, cluster analysis improved koff estimation (Fig. 

5(a)). While relative errors in koff  using the standard pulling speed method were between 

-53% to -63% across all conditions, K-means analysis reduced the relative error from -

43% at 6 pulling speeds to -11% and -8% at 9 and 12 pulling speeds respectively. Logistic 

regression also decreased the error from -46% to -24% and -27% as the number of tip-

surface retraction speeds were increased. In contrast, GMM showed a less significant 

improvement, with errors of -55%, -36% and -42% at 6, 9, and 12 pulling speeds 

respectively.  

Next, we measured koff estimation when the number of data points in each group 

equaled 10, 30, and 100 unbinding events. Our results showed that koff estimation using 

K-means method was superior, even when the amount of data was limited (Fig. 5(b)). 

When individual groups had 10, 30, and 100 rupture events, the relative errors using K-

means clustering was  -9%, -11% and -27% which was significantly lower than errors of 

-50%, -54% and -58%  measured with the standard pulling speed analysis. The logistic 

regression model also showed better accuracy, with errors of -24%, -24% and -37% while 

GMM showed a less significant improvement, with errors of -51%, -36% and -51% at 10 

events, 30 events and 100 events per group respectively.  Interestingly, while increasing 

the amount of data mainly increased precision, koff accuracy did not increase.  

The accuracy of koff estimation decreased with an increase in thermal noise using 

all grouping methods (Fig. 5(c)). When the force due to thermal fluctuations of the 

cantilever was 6.4 pN, 12.8 pN and 19.2 pN (0.5×, 1×, and 1.5× thermal noise), the 
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relative errors in estimated koff using the standard pulling speed method (-15%, -54% and 

-97%), k-means analysis (18%, -11%, and -88%), logistic regression (14%, -24% and -

92%), and GMM (-1%, -36% and -92%) were comparable.  

Importantly, our data showed that cluster analysis was especially useful for 

studying molecular interactions with high dissociation rates and wide energy barriers (Fig. 

5(d), (e)). At dissociation rates of 10-3 sec-1, 0.01 sec-1, and 0.1 sec-1 the relative error in 

koff estimated by K-means was -34%, -19%, and -11% respectively. The relative error 

using logistic regression was comparable to K-means with values of -39% for 10-3 sec-1, 

-32% for 0.01 sec-1, and -24% for 0.1 sec-1 respectively. In contrast the koff calculated 

using both GMM and the standard pulling speed method showed larger relative error (-

40%, -35%, -36% for GMM and -44%, -44%, -54% for pulling speed) for off rates of 10-3 

sec-1, 0.01 sec-1, and 0.1 sec-1 respectively.  

Similarly, when the conventional pulling speed method was used, increasing the 

width of energy barrier increased the error in koff estimation (-2% error at 0.1 nm, -33% 

error at 0.5 nm, and -54% error at 1 nm). However, this increase in relative error was not 

observed when cluster analysis was used (Fig. 5(e)). With barrier widths of 0.1 nm, 0.5 

nm and 1 nm, the errors in estimated koff were 0%, -16% and -11% for K-means; -1%, -

26% and -24% for logistic regression; -1%, -26% and -36% for GMM.  

Most importantly, the improvement in xβ estimation by cluster analysis followed a 

very similar trend as the koff estimation (Fig. 6), indicating that the accuracy of both koff 

and xβ estimates increased at the same time. This is particularly encouraging because it 

demonstrates that the increased accuracy of koff by cluster analysis was not offset by a 

reduced accuracy in xβ estimation. 
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Finally, we validated the effect of clustering by simultaneously varying parameters 

across a range of values that have previously been measured in DFS experiments with 

biological systems including cell adhesion proteins and antigen-antibody complexes [13]. 

A total of 324 DFS experiments were simulated. We used four values of koff (10-3, 0.01, 

0.1 and 1 sec-1) in combination with three values of xβ (0.1, 0.5 and 1 nm). In order to 

account for different experimental conditions, we also varied the number of pulling speeds 

(6, 9 and 12), number of events per pulling speed (10, 30 and 100 events), and different 

levels of thermal noise (0.5×, 1× and 1.5×). We applied cluster analysis to each condition 

and compared the estimated koff and xβ to the results obtained using the pulling speed 

method. The complete results of our simulations are presented in the Supporting 

Information (Figs. S1-S6; Tables S1-S3). In Figure 7 of the main manuscript, we just 

present results using 9 pulling speeds and 1× thermal noise analyzed using K-means, to 

illustrate its power in estimating koff and xβ (Fig. 7). We use stars to indicate conditions 

where K-means is more accurate and triangles to indicate conditions where the standard 

pulling speed analysis is more accurate; increase in the number of stars/triangle indicates 

a proportionally higher accuracy using K-means/standard-analysis.  

As seen in Fig. 7, K-means clustering improved the accuracy of koff and xβ even 

when the number of unbinding events were low. The improved accuracy of parameter 

estimation was more pronounced for wide energy barriers, high off-rates and when the 

unbinding events across different loading rates overlap (Fig. 7). For instance, at a 

dissociation rate of 0.1 sec-1, xβ of 1 nm and 30 events per pulling speed, K-means 

reduced the relative error in koff to -11% as compared to a -54% relative error using pulling 

speed analysis. In contrast, when the energy barrier was narrow or the off-rate was small, 
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the unbinding events were already well-separated and cluster analysis did not 

significantly improve estimation of koff and xβ. 

 

 

Figure 7. Relative error in estimated (a) koff and (b) xβ using K-means clustering. 
DFS data was simulated using 9 pulling speeds and 1× thermal noise. Other parameters 
include koff = 10-3, 0.01, 0.1, 1 sec-1; xβ = 0.1, 0.5, 1 nm; the number of events per pulling 
speed = 10, 30, 100.  For each condition, the relative errors were compared with pulling 
speed method. Stars indicate conditions where K-means is more accurate (0 stars: no 
improvement; 1 star: relative error is reduced ≤ 10% for koff and ≤ 5% for xβ; 2 stars: 
relative error is reduced by 10% – 20% for koff and 5% – 10% for xβ; etc.). Triangles 
indicate conditions where the K-means analysis is less accurate; relative error is 
increased ≤ 10% for koff and ≤ 5% for xβ.  

(a) 

(b) 
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3.5 Conclusion  

This manuscript presents a high accuracy method using clustering algorithms, to 

improve kinetic parameter estimation while retaining the simplicity of data collection and 

analysis of a conventional DFS experiment. We benchmarked the performance of 

different clustering algorithms, by testing them across an extensive range of conditions 

that mimic real-world experiments. The parameters we varied included the number of 

unbinding events, pulling speeds, and noise levels, across a range of koff and xβ typical of 

receptor-ligand pairs. Under these conditions, the K-means method had the highest 

accuracy in estimating koff and xβ. Although logistic regression and GMM were more 

accurate than the conventional pulling speed method, the improvement was not as 

significant as K-means.  

The cluster analysis used in this study could be further improved, by grouping 

unbinding events using Bell-Evans force distributions [10] or more sophisticated 

distributions described in the literature [33, 34]. The analysis method  presented in our 

work can also be used to identify and eliminate artifacts due to the formation of  multiple 

receptor ligand bonds and nonspecific binding events which are not tightly clustered on a 

force-loading rate plot [35]. Finally, although we used the classic Bell-Evans model in this 

manuscript, similar clustering analysis can be easily applied to other DFS models 

described in the literature [34, 36, 37]. 
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3.8 Supporting Information 

 

Figure S1. Relative error in estimated koff using Gaussian mixture model (GMM) 
cluster analysis. The effect of GMM was validated by varying parameters across a 
realistic range of values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 
and 1 sec-1) in combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers 
of pulling speeds (6, 9 and 12), and three amounts of data (10, 30 and 100 events per 
pulling speed) under three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, 
the relative error of koff was compared with the standard pulling speed analysis.  Stars 
indicate conditions where GMM is more accurate (0 stars: no improvement; 1 star: relative 
error is reduced ≤ 10%; 2 stars: relative error is reduced by 10% – 20%; etc.). Triangles 
indicate conditions where the GMM is less accurate (1 triangle: relative error is increased 
≤ 10%; 2 triangles: relative error is increased by 10% – 20%; etc.). 
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Figure S2. Relative error in estimated koff using logistic regression cluster analysis. 
The effect of logistic regression clustering was validated by varying parameters across a 
realistic range of values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 
and 1 sec-1) in combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers 
of pulling speeds (6, 9 and 12), and three amounts of data (10, 30 and 100 events per 
pulling speed) under three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, 
the relative error of koff was compared with the standard pulling speed analysis.  Stars 
indicate conditions where logistic regression is more accurate (0 stars: no improvement; 
1 star: relative error is reduced ≤ 10%; 2 stars: relative error is reduced by 10% – 20%; 
etc.). Triangles indicate conditions where the logistic regression is less accurate (1 
triangle: relative error is increased ≤ 10%; 2 triangles: relative error is increased by 10% 
– 20%; etc.). 
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Figure S3. Relative error in estimated koff using K-means cluster analysis. The effect 
of K-means clustering was validated by varying parameters across a realistic range of 
values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 and 1 sec-1) in 
combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers of pulling speeds 
(6, 9 and 12), and three amounts of data (10, 30 and 100 events per pulling speed) under 
three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, the relative error of 
koff was compared with the standard pulling speed analysis.  Stars indicate conditions 
where K-means is more accurate (0 stars: no improvement; 1 star: relative error is 
reduced ≤ 10%; 2 stars: relative error is reduced by 10% – 20%; etc.). Triangles indicate 
conditions where the K-means is less accurate (1 triangle: relative error is increased ≤ 
10%; 2 triangles: relative error is increased by 10% – 20%; etc.). 
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Figure S4. Relative error in estimated xβ using Gaussian mixture model (GMM) 
cluster analysis. The effect of GMM was validated by varying parameters across a 
realistic range of values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 
and 1 sec-1) in combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers 
of pulling speeds (6, 9 and 12), and three amounts of data (10, 30 and 100 events per 
pulling speed) under three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, 
the relative error of xβ was compared with the standard pulling speed analysis.  Stars 
indicate conditions where GMM is more accurate (0 stars: no improvement; 1 star: relative 
error is reduced ≤ 5%; 2 stars: relative error is reduced by 5% – 10%; etc.). Triangles 
indicate conditions where the GMM is less accurate (1 triangle: relative error is increased 
≤ 5%; 2 triangles: relative error is increased by 5% – 10%). 
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Figure S5. Relative error in estimated xβ using logistic regression cluster analysis. 
The effect of logistic regression clustering was validated by varying parameters across a 
realistic range of values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 
and 1 sec-1) in combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers 
of pulling speeds (6, 9 and 12), and three amounts of data (10, 30 and 100 events per 
pulling speed) under three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, 
the relative error of xβ was compared with the standard pulling speed analysis. Stars 
indicate conditions where logistic regression is more accurate (0 stars: no improvement; 
1 star: relative error is reduced ≤ 5%; 2 stars: relative error is reduced by 5% – 10%; etc.). 
Triangles indicate conditions where the logistic regression is less accurate; relative error 
is increased ≤ 5%. 
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Figure S6. Relative error in estimated xβ using K-means cluster analysis. The effect 
of K-means clustering was validated by varying parameters across a realistic range of 
values. DFS data was simulated using four values of koff (10-3, 10-2, 0.1 and 1 sec-1) in 
combination with three values of xβ (0.1, 0.5 and 1.0 nm), three numbers of pulling speeds 
(6, 9 and 12), and three amounts of data (10, 30 and 100 events per pulling speed) under 
three levels of thermal noise (0.5×, 1× and 1.5×). For each condition, the relative error of 
xβ was compared with the standard pulling speed analysis. Stars indicate conditions 
where K-means is more accurate (0 stars: no improvement; 1 star: relative error is 
reduced ≤ 5%; 2 stars: relative error is reduced by 5% – 10%; etc.). Triangles indicate 
conditions where the K-means is less accurate; relative error is increased ≤ 5%. 
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Table S1. Relative errors of koff, xβ with 0.5× thermal noise*    Unit: % 

Simulation conditions 
Kinetic 

parameters 
Methods of analysis 

Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

10 

6 

0.1 

10-3 2 30 2 30 2 30 2 30 

10-2 3 12 3 12 3 12 3 12 

10-1 2 18 2 18 2 18 2 21 

1 7 -15 7 -13 7 -15 7 -13 

0.5 

10-3 2 -4 2 -4 2 -4 2 -4 

10-2 2 0 2 0 2 0 2 0 

10-1 4 -25 4 -27 4 -27 3 -27 

1 3 -13 3 -11 2 -8 3 -16 

1.0 

10-3 2 -13 2 -13 2 -13 2 -13 

10-2 2 -5 2 -6 2 -5 2 0 

10-1 5 -31 5 -31 5 -30 4 -8 

1 7 -21 6 -17 6 -7 3 2 

9 

0.1 

10-3 2 24 2 24 2 24 2 24 

10-2 2 31 2 31 2 31 2 31 

10-1 3 17 3 17 3 17 3 18 

1 7 -8 7 -8 7 -6 6 -3 

0.5 

10-3 0 7 0 7 0 7 0 6 

10-2 2 -6 2 -5 2 -6 1 0 

10-1 0 9 0 4 0 10 -1 19 

1 2 -12 1 4 1 4 0 9 

1.0 

10-3 3 -20 1 -6 2 -17 1 -9 

10-2 4 -39 5 -47 3 -28 1 -12 

10-1 4 -17 3 -11 1 16 2 9 

1 8 -27 4 10 2 14 2 9 

12 

0.1 

10-3 2 27 2 27 2 27 2 27 

10-2 2 21 2 21 2 22 2 31 

10-1 2 18 2 21 2 21 2 22 

1 6 -8 6 -7 5 -4 5 1 

0.5 

10-3 4 -35 4 -32 4 -32 4 -29 

10-2 2 -16 2 -5 1 -1 1 -3 

10-1 2 -8 1 0 0 10 0 10 

1 4 -16 1 1 -1 10 0 6 

1.0 

10-3 2 -18 0 -1 1 1 0 12 

10-2 2 -6 0 14 -1 34 -1 38 

10-1 4 -12 0 28 0 37 -3 53 

1 7 -21 -1 42 0 35 -1 31 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

30 

6 

0.1 

10-3 1 34 1 34 1 34 1 34 
10-2 1 30 1 30 1 30 1 30 
10-1 3 16 3 16 3 16 3 15 

1 7 -9 6 -7 6 -7 6 -6 

0.5 

10-3 2 -16 2 -16 2 -16 2 -16 
10-2 3 -14 3 -14 3 -14 3 -16 
10-1 2 -5 2 -4 2 -4 2 -2 

1 2 -7 2 -6 2 -4 1 3 

1.0 

10-3 4 -37 4 -37 4 -37 4 -37 
10-2 3 -16 3 -16 3 -18 3 -13 
10-1 5 -24 5 -28 5 -24 4 -13 

1 8 -32 7 -22 6 -15 5 -12 

9 

0.1 

10-3 1 36 1 36 1 36 1 36 
10-2 3 9 3 9 3 9 3 9 
10-1 3 12 3 12 3 13 3 15 

1 7 -10 7 -14 6 -8 6 -8 

0.5 

10-3 3 -16 3 -16 3 -16 2 -17 
10-2 2 -13 2 -13 2 -13 1 -5 
10-1 2 -11 2 -11 2 -7 1 -1 

1 4 -18 3 -15 2 -5 1 -2 

1.0 

10-3 3 -30 3 -30 3 -25 2 -13 
10-2 3 -18 2 -12 2 -9 1 9 
10-1 4 -15 3 -1 1 14 0 18 

1 8 -32 6 -17 2 9 1 10 

12 

0.1 

10-3 1 40 1 40 1 40 1 40 
10-2 3 16 3 16 3 16 3 17 
10-1 3 17 3 16 3 17 2 23 

1 6 -7 7 -16 6 -6 5 -7 

0.5 

10-3 2 -13 2 -12 2 -12 2 -7 
10-2 2 -9 1 -7 1 -1 0 6 
10-1 2 -9 2 -11 1 1 0 2 

1 2 -4 0 -3 -1 13 -1 13 

1.0 

10-3 3 -21 2 -10 1 -4 0 14 
10-2 2 -13 1 -5 0 15 -1 21 
10-1 4 -19 2 -7 -1 30 -1 36 

1 7 -25 0 36 0 28 1 28 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

100 

6 

0.1 

10-3 2 27 2 27 2 27 2 27 
10-2 2 21 2 21 2 21 2 21 
10-1 3 15 3 15 3 15 3 15 

1 6 -9 7 -11 6 -9 6 -7 

0.5 

10-3 2 -11 2 -11 2 -11 2 -11 
10-2 2 -13 2 -13 2 -13 2 -11 
10-1 3 -12 3 -13 3 -12 2 -8 

1 4 -14 3 -12 3 -12 2 -7 

1.0 

10-3 3 -27 3 -25 3 -27 3 -24 
10-2 4 -29 4 -28 4 -28 4 -25 
10-1 6 -34 6 -33 6 -28 5 -20 

1 7 -25 7 -21 4 -7 3 -1 

9 

0.1 

10-3 1 40 1 40 1 40 1 40 
10-2 2 30 2 30 2 30 2 30 
10-1 3 11 3 10 3 12 3 14 

1 6 -6 12 -49 5 -3 5 -2 

0.5 

10-3 2 -7 2 -7 2 -7 2 -6 
10-2 2 -9 2 -8 2 -7 1 0 
10-1 3 -14 3 -14 2 -10 1 -2 

1 4 -15 4 -18 3 -16 2 -9 

1.0 

10-3 3 -20 3 -18 2 -14 1 -1 
10-2 3 -21 3 -18 2 -8 1 0 
10-1 5 -25 4 -15 2 3 0 16 

1 8 -28 4 -9 2 14 2 14 

12 

0.1 

10-3 1 32 1 32 1 32 1 32 
10-2 2 27 2 27 2 27 2 28 
10-1 3 16 4 9 3 17 2 19 

1 6 -7 10 -42 6 -11 6 -9 

0.5 

10-3 2 -12 2 -12 2 -11 1 -6 
10-2 2 -13 2 -14 2 -10 1 -4 
10-1 2 -13 2 -12 2 -9 1 1 

1 3 -13 6 -36 2 -8 2 -12 

1.0 

10-3 3 -26 3 -19 1 -2 0 7 
10-2 4 -31 2 -10 1 2 0 10 
10-1 5 -24 2 0 0 25 -1 28 

1 8 -28 1 24 1 22 1 24 

* Thermal noise distributed normally about zero with standard deviations of 6.4 pN in force 
and 0.16 nm in distance. 
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Table S2. Relative errors of koff, xβ with 1× thermal noise*                Unit: % 

Simulation conditions 
Kinetic 

parameters 
Methods of analysis 

Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

10 

6 

0.1 

10-3 2 -11 2 -11 2 -11 2 -11 

10-2 4 -15 4 -15 4 -15 4 -15 

10-1 4 -7 4 -7 4 -7 4 -5 

1 9 -26 8 -26 8 -26 8 -26 

0.5 

10-3 1 -25 1 -25 1 -25 1 -25 

10-2 3 -41 3 -41 3 -41 3 -41 

10-1 2 -25 1 -24 1 -24 1 -23 

1 4 -36 4 -34 4 -34 4 -32 

1.0 

10-3 4 -44 4 -44 4 -44 4 -46 

10-2 3 -35 3 -35 3 -35 3 -28 

10-1 15 -77 15 -75 13 -70 12 -71 

1 27 -91 26 -90 22 -87 19 -83 

9 

0.1 

10-3 3 1 3 1 3 1 3 1 

10-2 3 -6 3 -6 3 -6 3 -6 

10-1 5 -9 4 -9 4 -8 4 -11 

1 8 -29 8 -29 7 -27 7 -26 

0.5 

10-3 1 -16 1 -18 1 -16 1 -16 

10-2 4 -41 3 -38 2 -38 3 -36 

10-1 4 -31 4 -35 3 -33 2 -32 

1 5 -33 3 -28 1 -16 2 -17 

1.0 

10-3 4 -43 3 -39 3 -39 1 -24 

10-2 8 -57 8 -61 7 -51 4 -41 

10-1 7 -50 6 -51 4 -24 1 -9 

1 26 -89 15 -70 13 -71 13 -73 

12 

0.1 

10-3 0 33 0 33 0 33 0 33 

10-2 2 8 2 8 2 8 2 9 

10-1 3 -3 3 -3 3 -3 3 -2 

1 7 -28 8 -30 7 -25 6 -21 

0.5 

10-3 1 -24 1 -21 1 -21 1 -17 

10-2 2 -29 1 -20 2 -24 0 -9 

10-1 2 -27 0 -10 0 -12 0 -12 

1 5 -38 1 -20 0 -17 0 -18 

1.0 

10-3 -2 37 -2 12 -4 57 -5 70 

10-2 6 -53 7 -61 3 -46 1 -25 

10-1 10 -64 3 -29 1 -29 1 -26 

1 24 -88 11 -69 15 -73 12 -71 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

30 

6 

0.1 

10-3 1 25 1 25 1 25 1 25 
10-2 4 -9 4 -9 4 -9 4 -9 
10-1 4 -7 4 -7 4 -7 4 -7 

1 8 -28 7 -25 7 -26 7 -23 

0.5 

10-3 2 -24 2 -24 2 -24 2 -24 
10-2 2 -20 2 -20 2 -20 2 -19 
10-1 4 -34 4 -34 4 -34 3 -29 

1 5 -37 4 -34 4 -35 2 -27 

1.0 

10-3 4 -38 4 -38 4 -38 4 -38 
10-2 3 -30 4 -32 3 -31 2 -25 
10-1 8 -53 8 -55 8 -46 6 -43 

1 22 -86 20 -84 17 -80 16 -76 

9 

0.1 

10-3 2 14 2 14 2 14 2 14 
10-2 3 -1 3 -1 3 -1 3 -1 
10-1 4 -2 3 -1 3 -1 3 0 

1 8 -27 7 -26 7 -25 7 -22 

0.5 

10-3 1 -13 1 -13 1 -13 1 -18 
10-2 1 -23 2 -23 1 -23 1 -18 
10-1 3 -33 2 -26 2 -26 1 -16 

1 5 -38 4 -36 3 -30 2 -26 

1.0 

10-3 3 -44 2 -40 3 -39 2 -34 
10-2 5 -44 3 -35 3 -32 2 -19 
10-1 8 -54 5 -36 3 -24 1 -11 

1 26 -89 19 -81 15 -76 14 -72 

12 

0.1 

10-3 1 18 1 18 1 18 1 18 
10-2 4 -3 4 -3 4 -3 4 -3 
10-1 4 -4 4 -3 4 -2 4 -4 

1 8 -28 8 -33 6 -25 6 -23 

0.5 

10-3 2 -31 2 -27 2 -27 2 -25 
10-2 2 -29 2 -27 2 -28 1 -21 
10-1 2 -26 3 -33 1 -20 1 -16 

1 5 -42 2 -23 0 -15 0 -15 

1.0 

10-3 4 -42 1 -19 1 -24 0 -3 
10-2 2 -24 1 -22 -2 16 -3 33 
10-1 9 -63 4 -42 3 -27 0 -8 

1 26 -90 9 -59 12 -68 9 -60 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

100 

6 

0.1 

10-3 2 15 2 15 2 15 2 15 
10-2 3 3 3 3 3 3 3 3 
10-1 4 -7 4 -7 4 -7 4 -5 

1 8 -29 8 -28 8 -28 7 -26 

0.5 

10-3 2 -21 2 -21 2 -21 2 -21 
10-2 2 -21 2 -21 2 -21 1 -18 
10-1 2 -26 2 -24 2 -26 2 -25 

1 6 -42 5 -38 5 -39 4 -34 

1.0 

10-3 4 -41 4 -41 4 -41 3 -37 
10-2 5 -50 5 -49 5 -48 4 -45 
10-1 7 -54 7 -52 6 -48 4 -36 

1 21 -84 21 -85 16 -74 14 -71 

9 

0.1 

10-3 2 17 2 17 2 17 2 17 
10-2 2 7 2 7 2 7 2 6 
10-1 5 -10 5 -11 4 -10 4 -9 

1 8 -27 8 -28 7 -24 6 -23 

0.5 

10-3 2 -26 2 -25 2 -26 2 -23 
10-2 2 -26 2 -23 2 -23 1 -19 
10-1 2 -25 2 -20 1 -21 1 -12 

1 5 -39 4 -34 2 -27 2 -25 

1.0 

10-3 2 -29 1 -21 1 -16 0 0 
10-2 2 -25 1 -19 1 -11 -1 10 
10-1 8 -58 7 -51 4 -37 2 -27 

1 23 -86 22 -87 12 -64 10 -61 

12 

0.1 

10-3 2 13 2 13 2 13 2 13 
10-2 3 6 3 6 3 6 2 6 
10-1 4 -10 4 -9 4 -7 4 -5 

1 8 -28 10 -48 8 -30 7 -27 

0.5 

10-3 2 -26 2 -25 2 -22 1 -18 
10-2 2 -31 2 -31 2 -30 1 -24 
10-1 2 -26 2 -21 1 -20 0 -14 

1 5 -37 2 -29 0 -15 0 -15 

1.0 

10-3 2 -36 2 -23 1 -9 -1 0 
10-2 4 -35 1 -15 -1 7 -1 9 
10-1 8 -54 6 -43 1 -12 0 -8 

1 23 -86 8 -52 11 -64 11 -64 

* Thermal noise distributed normally about zero with standard deviations of 12.8 pN in 
force and 0.32 nm in distance. 
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Table S3. Relative errors of koff, xβ with 1.5× thermal noise* Unit: % 

Simulation conditions 
Kinetic 

parameters 
Methods of analysis 

Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

10 

6 

0.1 

10-3 3 -15 3 -15 3 -15 3 -15 

10-2 3 -13 3 -13 3 -13 3 -13 

10-1 4 -27 4 -27 4 -25 4 -27 

1 8 -38 8 -38 8 -40 8 -36 

0.5 

10-3 7 -58 7 -58 7 -58 7 -58 

10-2 0 -38 0 -38 0 -38 0 -38 

10-1 -1 -21 -1 -21 -1 -17 -1 -21 

1 14 -72 13 -71 12 -71 12 -70 

1.0 

10-3 6 -56 6 -56 5 -52 6 -52 

10-2 10 -72 10 -75 9 -78 10 -72 

10-1 25 -96 24 -95 26 -96 23 -94 

1 61 -100 41 -98 38 -99 22 -91 

9 

0.1 

10-3 2 8 2 8 2 8 2 8 

10-2 3 -13 3 -13 3 -13 3 -9 

10-1 6 -29 6 -30 6 -30 6 -28 

1 10 -45 10 -44 9 -42 9 -43 

0.5 

10-3 1 -20 1 -20 1 -20 1 -17 

10-2 1 -25 1 -23 0 -21 1 -28 

10-1 3 -40 2 -36 3 -36 2 -29 

1 12 -70 10 -63 9 -64 8 -64 

1.0 

10-3 4 -47 2 -31 5 -46 1 -22 

10-2 12 -85 10 -82 7 -72 9 -83 

10-1 23 -96 15 -87 12 -87 10 -81 

1 49 -100 17 -77 -1 -51 -11 49 

12 

0.1 

10-3 2 3 2 3 2 3 2 3 

10-2 2 5 2 1 2 1 2 -3 

10-1 5 -23 5 -23 5 -23 5 -23 

1 8 -43 8 -42 8 -38 8 -37 

0.5 

10-3 3 -57 4 -55 4 -58 3 -49 

10-2 -3 0 -2 -3 -2 -5 -3 8 

10-1 3 -39 3 -36 1 -29 0 -22 

1 10 -71 7 -63 6 -64 6 -59 

1.0 

10-3 1 -40 0 -12 -1 9 -3 40 

10-2 9 -75 3 -59 3 -54 2 -46 

10-1 28 -98 14 -84 15 -87 15 -89 

1 75 -100 1 -50 5 -44 -3 -46 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

30 

6 

0.1 

10-3 2 1 2 1 2 1 2 1 
10-2 3 -8 3 -8 3 -8 3 -8 
10-1 6 -29 6 -29 6 -29 6 -29 

1 9 -40 9 -38 9 -38 9 -38 

0.5 

10-3 3 -42 3 -42 3 -42 3 -42 
10-2 3 -42 3 -41 3 -42 3 -41 
10-1 3 -43 3 -43 3 -43 3 -37 

1 12 -74 12 -73 12 -73 11 -71 

1.0 

10-3 1 -37 1 -36 1 -34 1 -36 
10-2 12 -80 11 -81 12 -77 10 -76 
10-1 38 -99 36 -99 33 -99 31 -98 

1 81 -100 70 -100 46 -99 43 -99 

9 

0.1 

10-3 3 -5 3 -5 3 -5 3 -5 
10-2 4 -17 4 -17 4 -17 4 -17 
10-1 5 -23 5 -20 5 -20 5 -20 

1 8 -38 8 -37 8 -35 7 -35 

0.5 

10-3 0 -21 0 -21 0 -21 0 -19 
10-2 2 -37 1 -27 2 -37 1 -26 
10-1 4 -46 3 -40 3 -42 2 -36 

1 11 -73 9 -69 9 -68 8 -64 

1.0 

10-3 6 -67 6 -67 5 -59 3 -46 
10-2 10 -81 10 -83 9 -77 7 -71 
10-1 27 -97 22 -92 18 -92 13 -88 

1 60 -100 0 -21 -7 68 -7 -5 

12 

0.1 

10-3 2 7 2 7 2 7 2 7 
10-2 4 -18 4 -18 4 -17 4 -17 
10-1 4 -20 5 -21 4 -19 4 -17 

1 9 -41 9 -42 8 -37 7 -35 

0.5 

10-3 1 -34 1 -31 1 -30 1 -29 
10-2 1 -29 1 -27 1 -26 0 -21 
10-1 2 -36 1 -32 0 -28 -1 -21 

1 10 -70 6 -60 5 -58 5 -53 

1.0 

10-3 4 -53 1 -36 0 -17 0 -25 
10-2 9 -75 10 -80 4 -58 2 -43 
10-1 27 -97 18 -91 12 -84 10 -74 

1 65 -100 -2 -42 -3 -12 -7 30 
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Events  
per velocity 

Number of 
velocities 

True Value Pulling speed GMM 
Logistic 

regression 
K-means 

xβ (nm) koff (s-1) xβ koff xβ koff xβ koff xβ koff 

100 

6 

0.1 

10-3 3 -3 3 -3 3 -3 3 -3 
10-2 3 -8 3 -8 3 -8 3 -8 
10-1 5 -25 5 -25 5 -25 5 -24 

1 9 -40 9 -40 9 -41 8 -39 

0.5 

10-3 3 -44 3 -44 3 -44 3 -44 
10-2 3 -40 3 -39 3 -40 3 -41 
10-1 4 -46 4 -46 4 -45 4 -44 

1 12 -71 11 -70 11 -70 11 -70 

1.0 

10-3 4 -51 4 -51 3 -50 3 -46 
10-2 13 -86 12 -85 12 -83 11 -82 
10-1 31 -98 30 -98 27 -97 25 -96 

1 69 -100 60 -100 26 -95 21 -93 

9 

0.1 

10-3 3 -1 3 -1 3 -1 3 -1 
10-2 3 -12 3 -12 3 -12 3 -12 
10-1 5 -25 5 -25 5 -25 5 -23 

1 9 -39 8 -39 8 -37 8 -36 

0.5 

10-3 2 -38 2 -38 2 -38 2 -36 
10-2 2 -32 1 -27 2 -30 1 -25 
10-1 3 -45 2 -39 2 -41 2 -37 

1 11 -70 10 -67 9 -66 8 -63 

1.0 

10-3 6 -64 5 -58 4 -55 2 -41 
10-2 11 -81 10 -80 9 -76 7 -68 
10-1 27 -97 27 -97 15 -89 14 -87 

1 61 -100 12 -83 -6 28 -14 143 

12 

0.1 

10-3 3 -8 3 -8 3 -8 3 -8 
10-2 3 -11 3 -11 3 -11 3 -9 
10-1 5 -23 5 -23 5 -22 4 -19 

1 9 -41 9 -41 8 -39 8 -36 

0.5 

10-3 1 -28 1 -28 1 -26 0 -21 
10-2 2 -35 1 -30 1 -29 0 -21 
10-1 3 -39 2 -32 1 -27 1 -28 

1 10 -69 8 -63 7 -60 6 -56 

1.0 

10-3 4 -56 3 -41 1 -27 0 -20 
10-2 10 -78 8 -72 5 -61 4 -56 
10-1 30 -98 24 -96 19 -92 19 -92 

1 65 -100 -9 29 -2 -22 -8 21 

* Thermal noise distributed normally about zero with standard deviations of 19.2 pN in 
force and 0.48 nm in distance. 
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CHAPTER 4. FLUORESCENCE AXIAL LOCALIZATION WITH  
  NANOMETER ACCURACY AND PRECISION  

This chapter is published in Nano Letters† 

Hui Li‡, Chi-Fu Yen‡ and Sanjeevi Sivasankar 
  

4.1 Abstract 

  We describe a new technique, standing wave axial nanometry (SWAN), to image 

the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy 

and 3.7 nm precision. A standing wave, generated by positioning an atomic force 

microscope tip over a focused laser beam, is used to excite fluorescence; axial position 

is determined from the phase of the emission intensity. We use SWAN to measure the 

orientation of single DNA molecules of different lengths, grafted on surfaces with different 

functionalities. 

 

4.2 Introduction 

Fluorescence imaging of nanoscale biological assemblies rely on localizing 

molecules with high accuracy and measuring distances between them with high 

resolution. However, the resolution of conventional fluorescence microscopes is limited 

by the diffraction of light: with a high numerical aperture objective and visible excitation, 

resolution is about 200 nm in the lateral direction and 500 nm along the optical axis.  

A single fluorescent molecule can be localized with nanometer accuracy along 

the x- and y-axis by determining the centroid of its point spread functions (PSF) [1], a 

  
† H. Li, C.F. Yen, S. Sivasankar, Fluorescence Axial Localization with Nanometer 

Accuracy and Precision, Nano Lett. 12 (2012) 3731-3735. 
‡ These authors contributed equally 
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known as fluorescence imaging with one nanometer accuracy (FIONA) [2]. This approach 

has also been used to resolve the lateral separation between two dyes of the same or of 

different colors within a diffraction-limited spot [3-5]. FIONA can been combined with the 

stochastic switching of single molecule fluorescence to obtain high-resolution images of 

microscopic biological objects such as cells, an approach alternatively known as 

stochastic optical reconstruction microscopy (STORM) [6], photoactivated localization 

microscopy (PALM) [7], and fluorescence photoactivated localization microscopy 

(FPALM) [8]. The lateral resolution of fluorescence imaging can also be improved by 

using stimulated emission depletion (STED) to narrow the effective width of the PSF [9, 

10].  

Unlike imaging in the x- and y-direction, improving resolution and single molecule 

localization accuracy along the optical axis is more challenging [11]. In STORM 

experiments, the z-position of a single fluorophore can be determined with 50 nm 

resolution using a cylindrical lens to distort the shape of the PSF [12]; resolution can be 

further improved to 20 nm by sandwiching the sample between two opposing objectives 

[13]. Better resolution, down to 10 nm, can be achieved using interferometry as 

demonstrated in interferometric photoactivated localization microscopy (iPALM) and 4Pi-

single marker switching microscopy (4Pi-SMS) [14, 15]; this however requires the use of 

custom optics in a complicated layout for interference detection. Alternatively, 

fluorescence interference-contrast microscopy (FLIC) has been used to determine the 

height of dye monolayers with nanometer accuracy [16]; these experiments however 

require multiple replicas of the sample deposited on patterned silicon oxide surfaces 

which limits its applicability in single molecule biological imaging. Fluorescence 
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interference has also been used to monitor the movement of single motor proteins on 

microtubules [17].  

Here, we describe a new localization method with an axial resolution superior to 

previous techniques to determine the z-position of a single nanoscale fluorescent object 

with sub-nanometer accuracy. Our technique, called standing wave axial nanometry 

(SWAN), utilizes a commercial atomic force microscope (AFM) mounted on a single 

molecule confocal microscope [18]. A standing wave excitation pattern is generated by 

positioning the AFM tip over a focused laser beam. A fluorescent object is positioned 

within the standing wave and its fluorescence phase difference is used to measure the 

molecule’s axial location. 

As a proof of principle, we use SWAN to measure the orientation of single-stranded 

DNA (ssDNA) and double-stranded DNA (dsDNA) of different lengths, grafted on surfaces 

with different functionalities. The conformation of immobilized DNA affects surface 

hybridization efficiency [19] and critically impacts techniques such as DNA microarrays 

and gene sequencing. Previously, ensemble methods such as ellipsometry [20], surface 

plasmon resonance [21], and fluorescence self-interference [22] have been used to 

characterize the orientation of DNA bound to surfaces at high densities, where steric 

effects from neighboring molecules influence conformation. However, the orientation of 

single, tethered DNA has not been measured. Using SWAN, we show that dsDNA of 

different lengths, grafted using polymer tethers, are oriented at an average tilt of 30° with 

respect to the surface. On the other hand, dsDNAs adsorbed nonspecifically to a 

positively charged surface lie flat. Finally, a single-stranded G-quadruplex sequence, 

folds into a structure where its 5′ and 3′ ends are adjacent to each other. 
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4.3 Principle of SWAN 

  In SWAN, an AFM tip, which serves as a mirror, is positioned over the focused 

laser beam of a confocal microscope (Supporting Information, Figure S1). Interference 

between the incident beam and the beam reflected off the AFM tip, results in a standing 

wave between the tip and surface (Figure 1a). As the tip is translated in the z-direction, 

the fluorescence emitted by a fluorophore positioned within the standing wave oscillates 

with a phase that corresponds to its distance from the surface. Axial location of the 

fluorophore can be measured from the phase difference relative to a fiduciary marker 

(Figure 1a). 

  As the AFM tip moves by a distance Z along the optical axis, the phase difference 

between the incident and reflected beams at a height Zmol above the surface is given by 

∅ =
2𝜋×2×(𝑍+𝑍0−𝑍𝑚𝑜𝑙)

𝜆𝑙𝑎𝑠𝑒𝑟
𝑛

     (1) 

where Z0 is the initial position of the AFM tip, λlaser is the wavelength of the excitation laser 

and n is the refractive index of the medium. The excitation intensity of the incident beam 

along the optical axis corresponds to the shape of the PSF and can be described by a 

power law [23]. Ignoring higher order terms, the excitation intensity at Zmol due to 

interference of the incident and reflected beams is given by 

𝐼 = 𝐴2 +
𝐵2

1+𝐶𝑍2
+ 2𝐴

𝐵

√1+𝐶𝑍2
𝑐𝑜𝑠(∅)   (2) 

where A and B are the amplitudes of the incident and reflected beams and C is the fitted 

amplitude decay that is related to the focal depth of the microscope [23]. Since the emitted 

fluorescence intensity is proportional to the excitation intensity, the height of a fluorescent 

object located at Zmol, can be determined by fitting its fluorescence emission to eq 2. 
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Figure 1. Schematic and validation of SWAN experiment. (a) Schematic of 
experiment. A standing wave, generated by positioning an atomic force microscope tip 
over a focused laser beam, is used to excite a nanoscale fluorescent object. Its axial 
position is determined from the phase difference of the fluorescence emission relative to 
a fiducial marker. (b) FDTD simulations show periodic oscillations in the electrical field 
intensity in the 0.75 μm gap between a silicon tip and coverslip. Scale bar = 200 nm. (c) 
Electric field intensity along the axial direction under three conditions: black, without tip; 
red, with tip 0.75 μm away from the surface (indicated by the red arrow); and blue, with 
tip 0.85 μm away from the surface (indicated by the blue arrow). Without a tip, the intensity 
along the optical axis decays rapidly due to the shape of the PSF. When an AFM tip is 
present, periodic oscillations in the electric field intensity are measured. Black arrow 
corresponds to location of coverslip surface which is also the position of laser focus. (d) 
Electric field intensities, monitored at six positions along the optical axis, as the AFM tip 
moves from 250 nm to 1.3 μm. The intensities oscillate with different phases. The black 
curve shows the intensity below the coverslip (magnified 10 times for clarity). Oscillations 
in the black curve, which result from the interference of light reflected from the coverslip 
and AFM tip, are used to determine the coverslip position.  

(a) (b) 

(c) (d) 



www.manaraa.com

121 
 

We used finite difference time domain (FDTD) simulations to calculate the electric 

field intensity distribution when the AFM tip was located over a focused excitation laser 

(Supporting Information). The simulations show periodic oscillations in the electric field in 

the gap between the AFM tip and coverslip, corresponding to a standing wave generated 

due to the interference between the incident excitation and the beam reflected off the tip 

(Figure 1b). The electric field intensity along the optical axis is plotted in Figure 1c. 

Without a tip, the intensity decays rapidly in the axial direction corresponding to the shape 

of the PSF. When the AFM tip is present, periodic oscillations of the electric field are 

superimposed on this decay (Figure 1c). By changing the distance between the tip and 

surface, the phase of the oscillation can be modulated: for instance, the phase is reversed 

when a tip 0.75 μm from the coverslip is relocated 0.85 μm away from the surface 

(Figure 1c). We also monitored the electric field intensity at six positions along the optical 

axis while the tip was translated from 250 nm to 1.3 μm in 13 nm steps (Figure 1d). As 

the distance from the surface increased, the average intensity decreases. However, the 

field at the six positions oscillate with different phases (Figure 1d). 

In order to excite a fluorophore using the standing wave, the fluorophore and AFM 

tip were aligned along the microscope’s optical axis (Supporting Information, Figure S2). 

To ensure that the tip does not contact the molecule during the experiment, the AFM tip 

was held at a minimum Z0 of 200 nm above the surface. The tip was translated in the 

axial direction from 200 to 1200 nm, while monitoring fluorescence emitted by the 

molecule. We determined the absolute tip-coverslip distance by measuring the 

interference of the excitation laser reflected off the coverslip and AFM tip and also by 

http://pubs.acs.org/doi/full/10.1021/nl301542c#fig1
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comparing the fluorescence phase difference of the dye to fiduciary markers bound to the 

coverslip (Supporting Information, Figure S2). 

 

4.4 Results   

4.4.1 SWAN calibration  

 We determined the accuracy of SWAN by measuring the radius of polystyrene 

nanospheres of different sizes, uniformly loaded with fluorescent dyes (Supporting 

Information). Because each nanosphere contains a large number of dyes, SWAN 

measures the average height of all the fluorophores within a single nanosphere, that is, 

the nanosphere radius. We measured fluorescent nanospheres with manufacturer 

specified diameters of 50 nm (Bead A) and 100 nm (Bead B) relative to fiducial beads 

(Bead F) with a diameter of 25 nm (Figure 2a). We also verified the size of the 

nanospheres using tapping-mode AFM imaging; measured diameters were consistent 

with the manufacturer specified values. Average bead diameters (mean ± standard error 

of mean) of 25.2 ± 0.4 nm, 49.0 ± 0.6 nm, and 99.2 ± 1.3 nm were measured for Beads 

F (97 beads), Beads A (90 beads), and Beads B (85 beads), respectively (Supporting 

Information, Figure S3). Histograms of the measured diameters were fit to a Gaussian 

function to estimate bead polydispersity; fits to Beads F, Beads A, and Beads B had a full 

width at half maxima (FWHM) of 7.5, 10.3, and 18.0 nm, respectively (Supporting 

Information, Figure S3). 

Typical SWAN data traces along with their fits to eq 2 are shown in Figure 2b. 

Relative to the fiducial beads, we expected to measure a height of 12.5 nm for Bead A  

  

http://pubs.acs.org/doi/full/10.1021/nl301542c#eq2
http://pubs.acs.org/doi/full/10.1021/nl301542c#fig2
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Figure 2. Calibration of SWAN using fluorescent nanospheres. (a) Schematic of 
experiment. The relative radii of 25 nm (Bead A) and 50 nm (Bead B) fluorescent 
nanospheres were measured relative to 12.5 nm (Bead F) fiducial beads. We expect to 
measure a relative radii of 12.5 and 37.5 nm for Beads A and B, respectively. (b) Typical 
experimental data traces (thin lines) along with their fits (thick lines) to eq 2. (c) 
Histograms of the measured radii were normally distributed; the peak of a Gaussian fit 
corresponded to the mean radii while the standard error of mean corresponded to the 
error. The measured relative radii for Beads A and Beads B were 11.7 ± 0.8 and 37.3 ± 
0.7 nm, respectively. (d) The axial position of a single Bead F was measured 100 times; 
the measured values had a standard deviation of 1.6 nm, which corresponds to a 
localization precision (FWHM) of 3.7 nm. 
 

 

 

  

c 

(a) 

(c) 

(b) 

(d) 
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and 37.5 nm for Bead B (Figure 2a). In close agreement, we measured relative radii 

(mean ± standard error of mean) of 11.7 ± 0.8 nm for Beads A (181 beads) and 37.3 ± 

0.7 nm for Beads B (178 beads) relative to Beads F (181 beads) (Figure 2c). This 

demonstrates that the accuracy of SWAN is less than 1 nm. It should be noted that 

increasing the sample size (i.e., number of nanospheres) will not increase the accuracy 

of the measurement. The standard deviations of the measured radii were 8.1 and 7.2 nm, 

respectively; we ascribe this in part to the polydispersity in the measured bead sizes. 

To quantify the resolution of SWAN, we measured the height of a single Bead F 

100 times. The fluorescence intensity of the bead varied between 50 and 100 kHz and 

photons were collected for 1 s. To increase the precision of our measurement, we reduced 

instrumental drift by simultaneously recording the fluorescence intensity and excitation 

laser interference rather than measuring them sequentially. The measured bead radius 

had a standard deviation of 1.6 nm (Figure 2d), which corresponds to an axial resolution 

of 3.7 nm (FWHM). This resolution is almost three times better than interferometric 

techniques [14, 15] and more than five times better than optical astigmatism [13].  

 

4.4.2 Measurement of single DNA orientation  

 Next, we used SWAN to measure the orientation of ssDNA and dsDNA molecules, 

labeled with a Cy3 fluorophore at one end and a biotin anchor at the other end. The DNA 

was tethered on a flexible polyethylene glycol (PEG) cushion decorated with 

nonfluorescent streptavidin (Figure 3a, Supporting Information). Average DNA orientation 

was measured relative to fluorescent Alexa Fluor 555 streptavidin that served as a 

fiduciary marker (Figure 3a). 

http://pubs.acs.org/doi/full/10.1021/nl301542c#fig2
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Figure 3. Orientation of immobilized DNA molecules measured using SWAN. (a) 
Schematic of the different DNA immobilization strategies used. ssDNA G-quadruplex (left 
panel) and dsDNA (middle panel) was tethered on a PEG cushion decorated with 
nonfluorescent streptavidin, via a biotin group. dsDNA (right panel) was also 
nonspecifically adsorbed to a self-assembled monolayer of positively charged silanes. 
Fluorescently labeled streptavidin served as a fiducial marker in all the experiments. (b) 
The measured height of 35 base ssDNA G-quadruplex sequence corresponds to a 
structure where the 5′ and 3′ ends are adjacent to each other. Histogram of measured 
heights for (c) 35 bp dsDNA, (d) 90 bp dsDNA and (e) 122 bp dsDNA anchored to surface 
via a flexible PEG linker. The measured heights correspond to tilt angles of 26°, 29°, and 
34°, respectively. Histogram of measured heights for (f) 35 bp dsDNA and (g) 122 bp 
dsDNA nonspecifically adsorbed to a silane monolayer. The measured heights indicate 
that the DNA lies flat on the surface. Errors correspond to standard error of mean. 
  

b 

(a) 

(b) (c) (d) 

b (e) (f) (g) 
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 The ssDNA was a G-quadruplex sequence that folds into a four-stranded structure 

[24] in the presence of Na+; when folded, the Cy3 is located at the same height as 

fluorescent streptavidin (Figure 3a). In the presence of Na+, we therefore anticipate 

measuring a height of 0 nm for the Cy3 relative to the fiducial. Indeed, in 50 mM Na+, we 

measured a height of 0.3 ± 0.4 nm (FWHM, 16.6 nm) for the ssDNA (Figure 3b). 

We also measured the orientation of 3 dsDNA sequences with lengths of 35 base 

pairs (bp), 90 bp, and 122 bp. Since the contour lengths of the 35 bp and 90 bp fragments 

are much smaller than the 50 nm persistence length of dsDNA, these sequences are 

expected to behave as stiff rods. On the other hand, the 122 bp DNA fragment has a 

contour length of 41.5 nm that is comparable to the dsDNA persistence length; the end-

to-end distance of this sequence was estimated to be 36.5 nm, 12% shorter than the 

contour length according to wormlike chain model [25]. It is anticipated that the tethered 

dsDNA freely rotates in the space above streptavidin [22]. Calculations show that under 

these conditions dsDNA is oriented at an average tilt of 30° with respect to the surface 

(Supporting Information, Figure S4). Using SWAN we measured a height of 5.2 ± 0.7 nm 

(FWHM, 17.2 nm), 14.8 ± 0.4 nm (FWHM, 15.5 nm), and 20.3 ± 0.7 nm (FWHM, 18.1 nm) 

for the three sequences, corresponding to tilt angles of 26°, 29°, and 34°, respectively 

(Figure 3c–e). 

A widely used approach to lay DNA flat on a surface is to adsorb it nonspecifically 

to a self-assembled monolayer of positively charged aminopropyltriethoxysilane (APTES) 

(Figure 3a) [26]. We adsorbed 35 bp dsDNA, 122 bp dsDNA, and fluorescently labeled 

streptavidin on a freshly prepared APTES surface and used SWAN to measure the 

difference in height between the dsDNA and fluorescently labeled streptavidin which 
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served as a fiduciary marker. We measured a height of 1.0 ± 0.7 nm (FWHM, 22.6 nm) 

for 35 bp dsDNA (Figure 3f) and −3.3 ± 0.6 nm (FWHM, 15.0 nm) for 122 bp dsDNA 

(Figure 3g), indicating that both dsDNAs are lying flat on the surface. 

 

4.5 Discussion and Conclusions  

In summary, SWAN has an axial resolution that exceeds all previously described 

single molecule techniques and can be used to localize the z-position of single fluorescent 

objects with nanometer accuracy and precision. While a total of 5 × 104 to 10 × 

104 photons were used in the nanosphere experiments to quantify the precision of SWAN, 

it is important to note that this count corresponds to the total number of photons measured 

over the 1 s duration of the experiment. This photon budget is merely a factor of 5 to 10 

greater than the 8 × 103 to 2 × 104 photons collected in each experiment with Cy3 labeled 

DNA. To estimate the resolution of SWAN using single Cy3 fluorophores, we reduced the 

total photon budget in Figure 2d to either 4 × 104 photons, 2 × 104photons, or 8 × 

103 photons by analyzing every 2nd, 4th, or 10th data point. The bead radii determined 

using this method had a FWHM of 4.3, 5.8, and 6.0 nm, respectively. A future study will 

experimentally determine the dependency of SWAN precision on photon budget. 

We used SWAN to show that dsDNA, grafted at low densities using polymer 

tethers, are oriented at an average tilt of 30° with respect to the surface, which agrees 

with calculated tilt angles for freely rotating stiff rods. It is important to note that because 

of the long measurement time (approximately 1 s per molecule) relative to the time scale 

for molecular rearrangements, we measure only the average tilt angle adopted by the 

dsDNA and not its instantaneous orientation. Previous ensemble measurements using 
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densely grafted DNA, measured average tilt angles of 50° and 40° for 21 bp and 50 bp 

dsDNA [22]. It is likely that the tilt value measured using SWAN is smaller because the 

low grafting density of dsDNA reduces steric constraints and permits the DNA tether to 

sample a larger range of conformations. Using SWAN, we also show that dsDNA 

adsorbed to a positively charged surface lays flat. Finally, a single-stranded G-quadruplex 

sequence, folds into a structure where its 5′ and 3′ ends are adjacent to each other. 

Errors in SWAN primarily arise from imprecise localization of the AFM tip over the 

fluorophore, instrumental drift between successive measurements as well as dye 

photophysics. To quantify these errors, we compared two different measurement 

strategies. In the first approach, we aligned the AFM tip over a single nanosphere (Bead 

F) and then measured its radius 100 times by simultaneously recording fluorescence 

oscillations and excitation laser interference. This measurement yielded a standard 

deviation in bead radius of 1.6 nm (Figure 2d). In the second approach, we performed 

100 measurements where we sequentially aligned the AFM tip over the nanosphere, 

measured fluorescence oscillations, and then measured excitation laser interference. The 

measurement precision using this strategy was lower than the first approach;, the 

standard deviation in bead radius was now 5.4 nm (Supporting Information, Figure S5). 

We believe that the first strategy reduces instrumental drift by minimizing the time 

between successive measurements. 

It is important to note that other interferometric methods assume that fluorescence 

interference occurs only at the peak wavelength of the fluorescence spectra [14, 15, 

17]. Due to the broad emission spectra of fluorescent dyes, this approximation introduces 

systematic errors in axial localization. In contrast to these methods, periodic fluorescence 
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oscillations measured in SWAN occur due to standing wave excitation of the fluorophore 

and not due to fluorescence interference. This improves the localization accuracy of 

SWAN. Although a small fraction of the fluorescence emitted by a dye will reflect off the 

AFM tip and interfere with the directly emitted fluorescence, this effect is minimal due to 

the small radius of curvature of the AFM tip (∼10 nm) and the large separation between 

the tip and surface (≥200 nm). To confirm this, we measured the oscillation period for the 

fluorescence and excitation laser (Supporting Information, Figure S6). Both oscillations 

have the same period (λlaser/2n) confirming that the measured fluorescence oscillations 

are only due to standing wave excitation. 

Unlike other interference-based approaches, SWAN does not require custom 

optics or specially engineered substrates. This makes the technique easy to use and well 

suited for biological samples such as lipid membranes, microfibers, protein complexes, 

and live cells. Moreover, unlike most interference-based techniques, where the 

interference pattern repeats itself and limits the working range to ∼250 nm, the standing 

wave in SWAN decays with tip–surface distance, which allows successive periods to be 

distinguished and extends the working distance. SWAN can be easily integrated with 

other super-resolution and super-accuracy techniques to obtain nanometer resolution 

along both the lateral and axial directions. Finally, a unique advantage of SWAN is that it 

can be used to determine the axial position of molecules in single molecule AFM force 

measurements and in single molecule cut and paste applications for the bottom-up 

assembly of biological nanostructures [27].  
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4.9 Supporting Information 

SWAN setup (Figure S1): In SWAN, a closed-loop, tip-scanning, AFM (Agilent 5500) is 

mounted on a standard sample scanning, confocal fluorescence microscope. An 

excitation laser beam (532 nm) was focused to a diffraction-limited spot on a glass cover 

slip using a 60x, 1.42 N.A., oil-immersion objective (Olympus). The cover slip was 



www.manaraa.com

133 
 

functionalized with fluorescent molecules, enclosed in a fluid-cell and mounted on a 

manual, 2-axes translation stage and a closed loop piezoelectric stage (100 µm x 100 

µm, Physik Instrumente) for coarse and fine positioning. A custom-made, low vibration 

adaptor was used to mate the AFM to the confocal microscope. The AFM was modified 

with an 880 nm infrared Super Luminescent Diode (Q-Photonics) to spectrally separate 

the AFM light source from Cy3 fluorescence. Fluorescence from the sample was collected 

by the same objective and focused onto the detection face of an Avalanche Photodiode 

(APD, Micro Photon Devices).  A motorized flipper equipped with a band-pass filter and 

a ND filter was positioned in front of the objective to transmit either Cy3 fluorescence or 

excitation light to the APD. Alternatively, to reduce data acquisition time, a dichroic beam 

splitter was used to separate the fluorescence and excitation light and a second APD was 

used to measure interference of the laser. Custom software written in LabView was used 

to control the microscope and synchronize AFM tip movement with fluorescence data 

collection. 

  

Data collection (Figure S2): Non-fluorescent, silicon AFM cantilevers (Nanoworld, Arrow 

Cantilevers, Spring Constant 2.8 N/m) were used in the SWAN experiments. First, an 

image of the AFM tip was obtained by scanning the tip over the focused laser beam and 

recording light reflected off the tip; the tip position was determined from the centroid of its 

image. Then, a fluorescence image of the sample was collected by moving the 

piezoelectric stage. The position of the beads/molecules was determined by fitting their 

fluorescence to a 2D Gaussian function; each bead/molecule could then be positioned at 

the center of the focused laser beam. Using this strategy, the center of the focused 
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confocal laser beam, fluorescent molecule and AFM tip was aligned along the 

microscope’s optical axis.  

After that, the AFM tip was translated in the axial direction from 200 nm to 1200 

nm, while monitoring fluorescence emitted by the beads/molecule positioned under the 

tip.  Since the AFM tip does not make contact with the surface, the absolute tip-surface 

distance was not known. We corrected for this using two strategies. First, we measured 

the z-position of the coverslip by monitoring the interference of the excitation laser 

reflected off the coverslip and AFM tip and used it to correct the fluorescence phase 

difference of the dye. Ideally, the interference data should be described by equation (2) 

with Zmol = 0; however, we measured a constant offset in Zmol. This is caused by the 

large size of the diffraction limited, focused, laser beam relative to the sharp AFM tip, 

variability in the shape of tip and variations in the angle at which the AFM tip is mounted; 

for the same tip with the same mount, the offset was always constant. Second, we 

compared the fluorescence phase difference of the dye to a fiduciary marker on the same 

sample. 

 

Finite Difference Time Domain (FDTD) simulations: FDTD simulations were 

performed using a commercial software package, FDTD Solutions (Lumercial Solutions 

Inc.). A 3.2 μm x 3.5 μm simulation region was assigned a refractive index of 1.33 to 

simulate the buffer environment; perfectly matched layers were used as boundary 

conditions to absorb all waves incident on them with no reflections. A rectangle of 2 μm 

x 0.6 μm with a refractive index of 1.46 was used to mimic the coverslip. An equilateral 

triangle (1.1 μm x 1.1 μm x 1.1 μm) with refractive index of 4.2 was used to mimic the 
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silicon AFM tip. A 0.2 μm thick layer around the surface of coverslip and AFM tip was 

discretized with mesh size of 1.6 nm (Mesh override region) to account for near field 

effects, other space was discretized using an auto non-uniform mesh with accuracy of 4 

(corresponding to mesh size of about 22nm). A Gaussian laser source with wavelength 

of 532 nm, propagating towards the tip, was positioned at the surface of the coverslip. 

The beam had a spot size of 0.5 μm and diverged according to a N.A. 1.4 thin lens. Time 

domain simulations were run, mostly more than 30,000 iterations, until an auto-shutoff 

criterion was reached. Electric field intensity in the frequency domain was obtained by 

Fourier transform of the simulated time domain fields normalized by Fourier transform of 

the source pulse. The tip position was changed from 250 nm to 1.3 µm in 13 nm steps 

(81 simulations). 

 

Measurement of nanosphere diameter with AFM (Figure S3): Diameter of Beads F, 

Beads A and Beads B were measured in air using a tapping-mode AFM. Nanospheres 

were diluted, adsorbed on freshly cleaved mica and dried at 70C for 2 hours. The 

samples were then imaged with a Multi-mode AFM (Veeco, CA) using Si cantilevers 

(Model: TESPA, Bruker). Image scan speed and feedback parameters were tuned to 

obtain sharp images. A first-order flattening was performed on every image. Height of 

beads was determined by subtracting the maximum height of every bead from the 

average of the surrounding background. 

 

Estimation of the average tilt angle of dsDNA (Figure S4): Since the length of the 

dsDNA used in our experiments is smaller than the persistence length, we modeled 
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dsDNA of length R as a stiff rod. We assumed that the dsDNA freely rotates in the half 

space above streptavidin due to its flexible linker. The average height, h , of the dsDNA 

can be estimated as:  
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So the average tilt angle is 30)/arcsin(  Rh  

 

Preparation of fluorescent nanosphere sample: Fluorescent nanospheres (Thermo 

Scientific) with radii of 12.5 nm (Beads F), 25 nm (Beads A) and 50 nm  (Beads B) were 

adsorbed onto freshly cleaned glass coverslips using 100mM CaCl2. The nanospheres 

were pre-mixed and diluted to yield a surface density of approximately 1 bead/10 m2.  

 

Preparation of DNA sample: Single strand DNA (35 bases) and three double strand 

DNA sequences (35 bp, 90 bp, 122 bp) were used to demonstrate single molecule axial 

localization by SWAN. The DNA molecules (Integrated DNA Technologies) were labeled 

with a single Cy3 fluorophore at one end and a biotin anchor at the other end. The DNA 

sequences used are listed below 
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35 bases ssDNA:  

Cy3-5'-TGG GGT TTT GGG GTT TTG GGG TTT TGG GGA GAT GG-3'-biotin 

 

35 bp dsDNA: 

Strand 1: Cy3-5'-TGG GGT TTT GGG GTT TTG GGG TTT TGG GGA GAT GG-3'-biotin 

Strand 2: 5'-CCA TCT CCC CAA AAC CCC AAA ACC CCA AAA CCC CA-3' 

 

90 bp dsDNA:   

Strand 1: 5'-CCC AGT TGA GCT GTG AGA ACC CCC TGT GCT TCA GGT TAT AAG 
ATT CCT CTA GGT AAA GTT GCG CCA CGG ACA ACA TCC GAT AGA ACG GCC-3'-
biotin 

 

Strand 2: 5'-GGC CGT TCT ATC GGA TGT TGT CCG TGG CGC AAC TTT ACC TAG 
AGG AAT CTT ATA ACC TGA AGC ACA GGG GGT TCT-3' and 5'-CAC AGC TCA ACT 
GGG-3'-Cy3 

 

122 bp dsDNA:  

Strand 1: 5'-CCC AGT TGA GCT GTG AGA ACC CCC TGT GCT TCA GGT TAT AAG 
ATT CCT CTA GGT AAA GTT GCG CCA CGG ACA ACA TCC GAT AGA ACG GCC 
GTC CAA CTG GCG TCA GGT ACA CCT CGC CAC CC-3' 

 

Strand 2: biotin-5'-GGG TGG CGA GGT GTA CCT GAC GCC AGT TGG ACG GCC GTT 

CTA TCG GAT GTT GTC CGT GGC GCA ACT TTA CCT AGA GGA ATC TTA TAA CCT 

GAA GCA CAG GGG GTT CT-3' and 5'-CAC AGC TCA ACT GGG-3'-Cy3 
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The DNA was either tethered to a Polyethylene Glycol (PEG) polymer cushion 

(Laysan Bio Inc) decorated with non-fluorescent streptavidin (Sigma-Aldrich) or was non-

specifically adsorbed to a self-assembled monolayer of positively charged APTES 

(Sigma-Aldrich). To immobilize the DNA, glass coverslips were first cleaned by heating in 

a piranha solution (25%H2O2 : 75% H2SO4) at 60 0C for 30 min and then rinsed with 

deionized water. The coverslips were subsequently sonicated in 1M KOH for 15 min, 

rinsed with deionized water, and dried using filtered, compressed air. The coverslips were 

finally incubated in 2% solution of APTES dissolved in Acetone for 30 min, rinsed with 

Acetone and deionized water, and dried using filtered air. The dsDNA was non-

specifically adsorbed to the APTES monolayer. The APTES surface was also incubated 

with 20 pM fluorescent streptavidin (Invitrogen), for 30 min; the fluorescent streptavidin 

non-specifically bound to the surface and served as fiduciary markers. Since fluorescent 

streptavidin has 2 to 3 Alexa Fluor®  555 dyes per protein, it is bright and can be easily 

distinguished from the DNA molecules. 

To tether DNA on PEG linkers, the silanized coverslips were first functionalized 

with PEG (MW 5000) containing an amine-reactive N-hydroxysuccinimide ester at one 

end.  The silanized coverslips were incubated with 100 mg/ml of a 1:9 stoichiometric 

mixture of Biotin-PEG and m-PEG, dissolved in NaHCO3 buffer (pH 8.0) for 3 hours. Then 

coverslips were then rinsed with deionized water, dried with filtered compressed air and 

stored in vacuum. Before an experiment, the coverslip was incubated with 20 pM of 

fluorescent streptavidin fiduciary markers for 10 min; the surface density of fluorescent 

streptavidin was ~ 1 molecule/10 m2. The biotinylated surface was then sequentially 
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incubated with 10 nM of non-fluorescent streptavidin and 20-100 pM DNA. All data was 

collected in a buffer containing 100mM Tris (pH 7.5), 2mM EDTA and 50 mM NaCl. 

 

 

Figure S1. Schematic of SWAN microscope. A closed-loop, tip-scanning, AFM is 
mounted on a home-built, sample scanning, confocal fluorescence microscope. 

Abbreviations used in the figure: ND, neutral density filter; S, shutter; /2, ½  wave plate; 

PBS, polarizing cube beam splitter; M, mirror; D, dichroic beam splitter; /4, ¼  wave plate; 
F, band pass filter; QPD, Quadrant Photodiode; APD, Avalanche Photodiode. Inset: Two 
alternate detection schemes were used. (a) For simultaneous measurements of 
fluorescence intensity and excitation laser interference, two APDs were used. A dichroic 
beamsplitter separated the excitation laser from the fluorescence emission. (b) For 
sequential measurements of fluorescence intensity and excitation laser interference, a 
motorized flipper equipped with a band-pass filter and a ND filter was used to transmit 
either Cy3 fluorescence or excitation light to the APD.  

(a) 

(b) 
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Figure S2. Steps in typical SWAN data collection. (a) An image of the AFM tip, held 
at a constant distance of 500nm above the surface, was obtained by using the APD to 
measure the light reflected off the AFM tip as it was scanned over the confocal laser 
beam.  The tip position was determined from the centroid of its image. The tip was moved 
to the center of the focused laser beam and then withdrawn 7 μm away from the surface. 
Right Panel: Image of AFM tip. The image is not a perfect circle due to the pyramidal 
shape of the tip. Scale bar = 100 nm. (b) The sample containing immobilized fluorescent 

beads/molecules was scanned across a 10 m x 10 m region by moving the 
piezoelectric stage and the fluorescence at each pixel of the scan was collected using the 
APD. Right Panel: Typical image of DNA (red circle) and fluorescent streptavidin (blue 

cross), immobilized on surface. Scale bar = 1 m. (c) The location of beads/molecules 
was calculated by fitting their fluorescence to a 2D Gaussian function; each 
bead/molecule was then sequentially positioned at the center of the focused laser beam. 
Right Panel: Image of a single fluorescent molecule fitted to a 2D Gaussian Function. (d) 
The AFM tip was now translated in the axial direction, while monitoring fluorescence 
emitted by the beads/molecule positioned under the tip. Right Panel: Fluorescence 
intensity during tip approach (red) or retraction (blue) from surface  and their 
corresponding fits to equation (2) (thick lines). (e) To determine the absolute tip-surface 
distance, the z-position of the coverslip was measured by monitoring the interference of 
the excitation laser reflected off the coverslip and AFM tip. This was used to correct the 
fluorescence phase difference of the dye. Right Panel: Laser reflection intensity during tip 
approach (red) or retraction (blue) from surface and corresponding fits to equation (2)  
(thick lines). 
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Figure S3. AFM measurement of Nanosphere diameter. (a) Typical AFM topography 
image of a Bead A sample. The color bar represents height from 0 to 50 nm. (b) 
Topography along the line in (a) shows height (diameter) of a bead. (c) Histogram of 
diameter of 97 Beads F. Gaussian fit has a peak value of 24.7 nm and FWHM of 7.5 nm. 
Arithmetic average of the nanosphere diameter (mean ± SEM) is 25.2 ± 0.4. (d) Histogram 
of diameter of 90 Beads A. Gaussian fit has a peak value of 49.6 nm and FWHM of 10.3 
nm. Arithmetic average of the nanosphere diameter (mean ± SEM) is 49.0 ± 0.6. (e) 
Histogram of diameter of 85 Beads B. Gaussian fit has a peak value of 104.0 nm and 
FWHM of 18.0 nm. Arithmetic average of the nanosphere diameter (mean ± SEM) is 99.2 
± 1.3.  
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Figure S4.  Schematic for calculation of the average tilt angle of a free rotating rod.  

 

 

 

 

Figure S5. Precision of sequential measurements. The radius of a single nanosphere 
(Bead F) was measured 100 times. For each measurement, we sequentially aligned the 
AFM tip over the nanosphere, measured fluorescence oscillations and then measured 
excitation laser interference. The measurement precision using this strategy was lower 
than simultaneous measurements due to increased instrumental drift. The standard 
deviation in the measured bead radius was 5.4 nm.  
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Figure S6. Oscillation period for fluorescence and excitation laser are similar. 
Distribution of fitted oscillation period (bar) and corresponding Gaussian distribution (solid 
line) for fluorescence (red) and laser reflection signal (blue).  Both oscillations have the 

same period ( nlaser 2 ) confirming that oscillation of fluorescence is only due to standing 

wave excitation and not due to fluorescence interference. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Conclusions 

I accomplished three goals in this dissertation. First, I resolved a critical biological 

problem in neuroscience, i.e. how does copper induce the misfolding, aggregation and 

neurotoxicity of PrP. Second, I established a more accurate analysis method for 

estimation of kinetic data from single molecule measurements. Third, I developed a new 

fluorescence localization microscopy with superior accuracy to previous methods. The 

significance and impact of each aspect of my work are summarized below.  

In chapter 2, I integrated both ensemble and single molecule techniques to 

resolve the molecular mechanism of copper induced PrP misfolding, oligomerization 

and neurotoxicity [1]. Using a single molecule fluorescence assay, we demonstrated 

that Cu2+ ions misfold PrP monomers into a protease-resistant conformation before 

oligomer assembly. This is a noteworthy finding; before this work it was believed that 

protease resistance is acquired only by PrP oligomers, rather than PrP monomers. In 

fact, protease resistance was often used as a readout for PrP oligomerization [2]. In 

addition, using single molecule force measurements with an AFM, we showed that the 

binding affinity between PrP monomers increases 900 fold after misfolding, which 

promotes the rapid formation of PrP oligomers. Finally, using a cell-free seeding assay 

and organotypic slice cultures, we showed that misfolded PrPs form active seeds that 

template aggregation and subsequently lead to the inflammation and degeneration of 

neuronal tissues. These results demonstrated, for the first time that misfolded PrP serve 
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as seeds for templated formation of aggregates which mediate inflammation and 

degeneration of neuronal tissue. 

While the DFS method we used to measure the binding affinity of PrPs in chapter 

2, allowed us to quantify the dissociation kinetics of protein-protein interaction at the 

single molecule level, the conventional analysis method we used resulted in substantial 

errors in estimated kinetic parameters. In chapter 3, I addressed this concern by 

developing a new analysis method for single molecule DFS experiments. I presented a 

high accuracy method using clustering algorithms, to improve kinetic parameter 

estimation while retaining the simplicity of data collection and analysis of a conventional 

DFS experiment. I also benchmarked the performance of this new analysis method 

using computer simulations under an extensive range of conditions to serve as a guide 

for future users of DFS data analysis. 

In my work with PrP, I used a single molecule fluorescence assay to indirectly 

determine the conformational change of individual PrP molecules [1]. With conventional 

fluorescence-based techniques, a single biological molecule can be localized with 

nanometer accuracy along the x- and y-axis [3]. However, along the z- axis, the best 

resolution that has been achieved, thus far, is ~10 nm using interferometry [4, 5]. In 

chapter 4, I described a novel fluorescence localization microscopy with a sub-

nanometer accuracy and 3.7 nm precision along the optical axis, a technique called 

standing wave axial nanometry (SWAN). In SWAN, a standing wave generated between 

an AFM tip and microscope objective is used to excite a fluorophore; the axial position 

of the molecule is determined from the phase of the emission intensity. Compared to 

other interferometric techniques which require custom optics and a complicated layout 
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[4, 5], SWAN can be simply implemented by mounting a commercial AFM on a single 

molecule confocal microscope. Furthermore, other interferometric methods determine 

the axial position of molecules based on the assumption that fluorescence interference 

occurs only at the peak wavelength of the fluorescence spectra [4, 5]. Due to the broad 

emission spectra of fluorescent dyes, this approximation introduces systematic errors in 

axial localization. In contrast to these methods, periodic fluorescence oscillations 

measured in SWAN occur due to standing wave excitation of the fluorophore and not 

due to fluorescence interference which improves localization accuracy. Moreover, unlike 

most interference-based techniques, where the interference pattern repeats itself and 

limits the working range to ∼250 nm, the standing wave in SWAN decays with tip-

surface distance, which allows successive periods to be distinguished and extends the 

working distance.  

 

5.2 Future Directions 

Neurodegenerative disease research 

In our study of PrP misfolding, a single molecule fluorescence assay was 

developed to distinguish the conformational change of PrP monomers based on their 

changes in protease resistance [1]. Since the acquisition of protease resistance upon 

protein misfolding and oligomerization is a common feature in many neurodegenerative 

disorders [6, 7], this method can be easily adopted to investigate the molecular 

mechanisms in similar diseases such as the structural conversion of α-synuclein protein 

in Parkinson’s disease [7]. More importantly, our work has established a comprehensive 

workflow to quantify the biophysical properties of single PrP molecules. 
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 In prion studies, one of the most challenging problems is that PrP molecules 

misfold and aggregate into various infectious conformations (strains), which result in 

different pathologies and clinical outcomes [8]. Different prion strains have different 

biophysical properties [9] which are averaged out in conventional bulk measurements. 

While multiple misfolding pathways in a single PrP molecule have been revealed using 

single molecule optical tweezers [10], a complete understanding of each prion strain is 

still lacking. A systematic investigation into aggregation kinetics, structural dynamics 

and biochemical properties of each prion strains at the single molecule level will be 

essential for future prion studies. 

 

Single molecule force analysis 

In AFM-DFS, protein complexes are ruptured at different force rates by varying 

the speed at which the AFM-tip and substrate are pulled away from each other. The 

rupture events are grouped according to their pulling speeds and the mean force and 

loading rate of each group is calculated to estimate the kinetic parameters. However, 

large uncertainties in determining the mean forces and loading rates can contribute 

significant errors in the estimated values. Using Monte Carlo simulations, I 

demonstrated that these errors can be dramatically reduced by sorting rupture events 

into groups using cluster analysis instead of sorting them according to their pulling 

speeds. Since this work is purely based on simulation results, a follow-up study 

validating our findings with real DFS data is required. By using DFS to measure protein 

complexes with known kinetics parameters, the performance of this new data analysis 

method can be confirmed. Furthermore, new clustering algorithms that sort rupture 
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events by describing the distribution of rupture forces using more sophisticated 

theoretical models [11, 12] would likely, further improve kinetic parameter estimation. 

Finally, since the principle of cluster analysis is to sort data into different groups such 

that events within the same category share similar characteristics, our method can also 

be used to identify and eliminate nonspecific artifacts which are not tightly clustered on 

a force-loading rate plot.   

 

Single molecule fluorescence microscopy 

 Since SWAN uses an AFM tip as a micro mirror for light reflection, it is possible 

to adopt this technique to determine the axial position of molecules in single molecule 

AFM force measurements and in single molecule cut and paste applications for the 

bottom-up assembly of biological nanostructures [13]. Additionally, the high spatial 

accuracy of SWAN relies on the precise alignment of AFM tip over the focused laser 

beam between successive measurements to overcome the instrumental drift. This drift 

can be minimized by combining SWAN with ultra-stable AFM to avoid the time-

consuming alignment before each measurement [14]. Finally, SWAN can be easily 

integrated with other lateral localization techniques for 3D tracking with nanometer 

accuracy [3].  
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